

Advanced Construction Calculator for Professionals

BuildCalc.com A Division of 42nd Parallel. Copyright © 2010. All Rights Reserved.

Table of Contents

Introduction: Welcome to BuildCalc 2.05
Groups of Functions
[ACOS] Arccosine Function
[Acre] Acre Function
[Arc] Arc Geometry & Framing Function 13
[ASIN] Arcsine Function
[ATAN] Arctangent Function
[🖾] Backspace Key 21
[Balstr] Baluster Function
[Bd Ft] Board Feet Function
[Circle] Circle Function
[CIrAll] Clear All Function
[cm] Centimeter Function
[CmpMtr] Compound Miter Function 40
[ColCon] Column / Cone Function
[COS] COSINE Function
[cost] Cost Function
[Diag] Diagonal Function
[dmsdeg] Angular Conversion Function
[Drywal] Drywall Function
[Feet] Feet Entry and Conversion
[Fence] Fence Material Estimation Function
[Footng] Footing Function
Fractions! How to work with them in BuildCalc72
[Height] Height Function74
[Hip/V] Hip/Valley Rafter Function
[Inch] Inch Entry and Conversion
[IrJack] Irregular Jack Rafter Function
[IrPitch] Irregular Pitch Function
[Jack] Jack Rafter Function

[kg] Kilogram Function100
[lbs] Pounds Function102
[Length] Length Function104
[m tons] Metric Tons Function106
[M-] Negative Cumulative Memory Function108
[M-R/C] Clear Cumulative Memory109
[m] Meter Function110
[M+] Add to Cumulative Memory112
[M1] Permanent Memory Function113
[M2] Permanent Memory Function114
[M3] Permanent Memory Function115
[mm] Millimeter Function
[Msnry] Masonry Function118
Blocks, Tile, Pavers, etc.) based on the below input scenarios. Also note that pieces can also be anything for which you know the area of one "piece", such as a plank, a shingle, a piece of sheathing, etc. The Masonry function has been enhanced to allow you to view multiple piece sizes and edit the list of piece sizes to suit your needs. See the first example below to learn how this is done
The Enhanced Masonry Function uses one of the following inputs to calculate an estimate how how many pieces of masonry you may need:118
1. Stored [Length] and [Height]
2. Stored [Length] and [Width]118
3. Input Area
4. Stored [Length] only118
5. Input Length118
6. Room Mode: Stored [Length], [Width] and [Height]118
[o.c.] On Center Memory125
[Pitch] Pitch Function126
[Polygn] Polygon Function
[Prefs] Preferences Storage Function
[qty@oc] Quantity spaced at On-Center distance Function
[R/Wall] Rake Wall Function

[Radius] Radius Function	142
[Rise] Rise Function	143
[Roof] Roof Function	145
[Run] Run Function	150
[SIN] SINE Function	152
[Slope] Slope Function	153
[/] Solidus (Fractional Entry) Key	154
[Stair] Stair Function	155
[TAN] TANGENT Function	163
[tons] Tons* Function	164
[Width] Width Function	166
[wt/vol] Density Function	168
[Yard] Yard Entry and Conversion	

Introduction: Welcome to BuildCalc 2.0

Hello, my name is Ben Askren, the developer of BuildCalc, and I want to thank you. In March of 2009, I set out on a mission to make BuildCalc the best construction calculator there is. With the guidance of construction pros who know what works, I dedicated myself to a lot of late nights and lost weekends. With so much of myself wrapped up in BuildCalc, it is a great satisfaction when someone finds it to be one of their favorite tools. So it is my hope that you quickly discover the benefits of BuildCalc and find it one of your favorite tools.

Sincerely,

Ben Askren

Groups of Functions

Below are groups for the functions that can be found in this manual. If you can't find the help you seek here, please don't hesitate to contact me at help@BuildCalc.com and I will work to make it right.

Fractional Inch Math	Function
Fraction Entry	[/] - the Solidus Function
Switching Denominators	[¹ /2] [¹ /4] [¹ /8] [¹ /16] [¹ /32] [¹ /64]
Fractional / Decimal Switch	[Feet] [Inches]
What is the default denominator?	[¹ /?]

Layouts	Function
Arch Framing	[Arc]
Balusters	[Balstr]
Compound Miters	[CmpMtr]
Equilateral Polygons	[Polygn]
Rafters	[Diag] - Common [Hip/V] [IrPtch]- Hip/Valley [Jack] - Regular & Irregular Jack Rafters
Rakewall Framing	[R/Wall]
Staircases	[Stair]

Material Estimation	Function
Brick, Block, Pavers, Tile	[Msnry]
Board Feet Conversion	[Bd Ft]
Concrete	[Footng] - <i>footers</i> [Height] - <i>rectangle slabs</i> [ColCon] - <i>columns / cones</i>
Cost	[Cost]
Excavation	[Height] - "box" volume [col/cone] - column/cone volume [wt/vol] - volume to weight conversion
Fence Posts, Rails, Pickets, Panels	[Fence] [Rails]
Drywall	[DryWal]
Shingles, Sheathing, Underlayment	[Roof]
Siding	[Height] - "boxes" [Diag] - gables
Studs, Posts, Pylons, Pillars	[qty@oc]

Geometry / Trigonometry	Function
Arches, Arcs	[Arc]
Boxes, Rooms and Slabs	[Height]
Circles	[Radius] [Circle]
Columns & Cones	[ColCon]
Equilateral Polygons	[Polygn]
Rectangles	[Width]
Right Triangles	[Pitch] [Rise] [Run] [Diag]
Trig Functions	[SIN] [COS] [TAN]
Inverse Trig Functions	[ASIN] [ACOS] [ATAN]

Метогу	Function
Cumulative Memory	[M+] [M-] [M-R/C]
Permanent Memory	[M1] [M2] [M3]
Functional Memory	[Pitch] [Rise] [Run] [Diag] [Radius] [Circle] [Arc] [Length] [Width] [Height] [Rails] [o.c.] [R/Wall]
Conversion Memory	[wt/vol] [tons]
Operation Memory	[Tape] [Store] [Recall] <i>for advanced functions</i>

[ACOS] Arccosine Function

1. Calculate the arccosine for a given angle.

2. The arccosine of a right triangle is the inverse of the cosine for that triangle.

Example:

1. Calculate the arccosine for a rise of 12 and a diagonal of 23.

Input	Display
clear temporary memory O O	0
If necessary, swipe green keys to reveal trig keys	
12 ÷ 23 = [Conv] [ASIN]	31.45°

*Note: The Arccosine function is one of six trigonometric functions found on BuildCalc. You can access the trig functions by sweeping your finger across the green keys (switching [Length] [Width] [Height] for [SIN] [COS] [TAN]). Pressing the yellow [Conv] button will switch [SIN] [COS] [TAN] to [ASIN] [ACOS] [ATAN].

[Acre] Acre Function

- 1. Set the units for a quantity to acres.
- 2. Convert an area to acres.

Examples:

1. Set the units for a quantity to acres.

Input	Display
clear temporary memory	0
125 [Conv] [Acre]	125acre

2. Convert an area to acres.

Input	Display
clear temporary memory	0
200 [Feet] [x] 80 [Feet] [=]	16000ft ²
[Conv] [Acre]	0.367309acre

[Arc] Arc Geometry & Framing Function

Starting with version 2.0, BuildCalc's Arc function has been enhanced to display the most information with the least number of keystrokes. Because the first press of the [Arc] key is often used to store an arc length or arc angle value for other calculations, no change has been made in function for the first key press. However, if the [Arc] key is pressed a second time, all Arc function results are displayed in a list.

The Arc function calculates the descriptive geometry for an arc when given two of the following as inputs:

- Arc Length or Angle (enter directly)
- Diameter (as entered into [Circle] or [Radius])
- Chord Length (as entered into [Run])
- Segment Length (as entered into [Rise])

Arc Illustration

The Arc function also calculates the length of each stud required to frame an arch. In addition to two of the above values, this portion of the calculation depends upon the following stored values or settings: [o.c.], [Prefs] and [R/Wall].

Кеу	Display
clear temporary memory	0
[o.c.]	Stud on-center spacing
[Prefs] Arched Wall	Switches between arches that are framed on the outside vs. framed on the inside
[R/Wall]	The extra base length added to every stud

Outside Arc Wall

Example:

Calculate the framing for an arc with a run of 9'10" and a rise of 3'6".

Input	Display
clear temporary memory	0
9 [Feet] 10 [Inches]	9ft 10in
[Run]	Run 9ft 10in
3 [Feet] 6 [Inches] [Rise]	Rise 3ft 6in
[Arc]	Arch Angle 141.78°
[Arc]	see results, below

Arc Layout		
Arc Angle		
	1/11 78°	
Arclanath	141.70	
Arc Lengui	12ft 10_ 1/_in	
Chard Langth (Bun)	1211 10- 7211	
Chora Length (Ruh)	Off 10in	
Commont Amo	911 10111	
Segment Area	05 40 470 62	
	25.12479ft ²	
Pie Slice (Sector) A	rea	
	33.4997ft ²	
Segment Height (Ris	se)	
	3ft 6in	
On-Center Spacing		
	16in	
Arched Wall Outside Segment Length 1		
	2- 1/16in	
Arched Wall Outside Segment Length 2		
8- ¹³ / ₁₆ in		
Arched Wall Outside	e Segment Length 3	
l	1ft 10- ¹/₂in	

Note: this example assumes a 16" on-center spacing stored in [o.c.].

Finding the Radius or Diameter of an Arc

The diameter or radius for an arc can be easily found when given two of the following* as inputs:

- [Arc] Angle
- Chord Length ([Run])
- Segment Length ([Rise])

Arc Illustration

Examples:

1. Find the radius of an arc given a Segment Height (Rise) of 2m and a Chord Length (Run) of 6m

Input	Display
clear temp memory O O	0
6 [m]	6m
[Run]	Run 6m
2 [m] [Rise]	Rise 2m
[Conv] [Radius]	Radius 3.25m

2. Find the diameter of an arc given a Segment Height (Rise) of 6ft 2in and a 120° arc angle.

Input	Display
clear temporary memory © ම	0
6 [Feet] 2 [Inches]	6ft 2in
[Rise]	Run 6ft 2in
120 [Arc]	Arc Angle 120.00°
[Circle]	Diameter 24ft 8in

3. Find the radius and diameter of an arc given a Chord Length (Run) of 36 inch and a 30 $^\circ$ arc angle.

Input	Display
clear temporary memory © ම	0
36 [Inches] [Run]	Run 36in
30 [Arc]	Arc Angle 30.00°
[Conv] [Radius]	Radius 69- ⁹ / ₁₆ in
[Circle]	Diameter 139- ¹ / ₁₆ in

Note that the [Arc] function can be used to calculate the length of each stud required to frame an arch.

[ASIN] Arcsine Function

- 1. Calculate the arcsine for a given angle.
- 2. The arcsine of right triangle is the inverse of the sine for that triangle.

Example:

|--|

Input	Display
clear temporary memory O	0
If necessary, swipe green keys to reveal trig keys	
12 ÷ 23 = [Conv] [ASIN]	31.45°

*Note: The Arccosine function is one of six trigonometric functions found on BuildCalc. You can access the trig functions by sweeping your finger across the green keys (switching [Length] [Width] [Height] for [SIN] [COS] [TAN]). Pressing the yellow [Conv] button will switch [SIN] [COS] [TAN] to [ASIN] [ACOS] [ATAN]. [ATAN] Arctangent Function

1. Calculates the arctangent for a given angle.

2. The arctangent of a right triangle is the inverse of the tangent for that triangle.

Example:

1. Calculate arctangent for rise of 12 and run of 23.

Input	Display
clear temporary memory O	0
If necessary, swipe green keys to reveal trig keys	
12÷23[ATAN]	27.55°

*Notes:

- The Arccosine function is one of six trigonometric functions found on BuildCalc. You can access the trig functions by sweeping your finger across the green keys (switching [Length] [Width] [Height] for [SIN] [COS] [TAN]).
- Pressing the yellow [Conv] button will switch [SIN] [COS] [TAN] to [ASIN] [ACOS] [ATAN].

[⊠] Backspace Key

Delete the last digit(s) entered.

Example:

1. Remove and replace the denominator of a fraction just entered.

Input	Display
clear temporary memory O	0
7 [/] 16	0- ⁷ / ₁₆ in
[図] [図]	0- ⁷ /in
8	0- ⁷ / ₈ in

[Balstr] Baluster Function

The Baluster Function calculates horizontal and inclined baluster layouts which can also be useful for more complex layout of other vertical members like pickets, studs and spindles.

BuildCalc has three Baluster Layout calculation modes:

- Limit Opening: Calculate the number of members and their locations with open space between members being no greater than an input value you provide.
- **Evenly Space:** For a given run and number of members, calculate their layout and maximum open spacing.
- **Best-Fit:** Given a desired on-center spacing and run, calculate the layout that is closest to the desired on-center spacing

Inputs to the [Balstr] function are shown in the "Input Parameters" section and can be given by one of the three following ways:

- Tapping on the parameter on the right of any cell in the "Input Parameters" section. In the example below, tap on 12ft in the "Run:" cell to change the run.
- Value stored in the [Run] memory function is automatically input into the appropriate Input Parameter field.
- If values have been stored using the Store button (at the bottom left), these values and results can be recalled using the Recall button. Note that the Recall button will not be present if values have not been stored.

For more information on input parameters, tap the on-the-spot help **1** at the bottom left of each input parameter cell.

Note: The [Balstr] function is not available when BuildCalc's Advanced Function mode is "OFF" (via [Conv] [Prefs]).

	BuildCal	c: Users	Manual	23
--	----------	----------	--------	----

Carrier 🔶	6:09 AM	
Balu	ister Func	tion
Analysis Ty	ре	
Limit Opening	Evenly Space	Best Fit
Input Param	neters	
Run:		
0		(12ft)
Rake Angle:		
0		0.00°
Member Widt	h:	
0		1- ³/8in
Members at e	ends?	
0	select v	/alues
Layout marks	s at:	
0		center
	1	Done

Examples:

Example 1. You have a handrail you wish to install between two posts on a deck. The distance between the posts is 7' 8- $\frac{1}{2}$ ". You are going to use 2- $\frac{1}{4}$ " x 2- $\frac{1}{4}$ " balusters. To meet code, the space between each baluster must be less than 4 inches. What is the layout that will use the least number of balusters?

Input	Display
clear temporary memory	0
[Conv] [Balstr]	see screens below

So first, let's enter the run for this baluster layout. Start by tapping on the **Run:** cell.

And now enter 7 [Feet] 8 [Inches] 1 / 2 [Done]

Carrier ᅙ	6:24 AM	
Balu	ister Func	tion
Analysis Ty	/pe	
Limit Opening	Evenly Space	Best Fit
Input Paran	neters	
Run:		
0	71	ft 8- ¹/₂in ∣
Rake Angle:		
0		0.00°
Member Widt	th:	
0		1- ³/8in
Members at e	ends?	
0	select v	alues
Layout mark	s at:	
Ø		center
		Done

And now, tap on the **Member Width:** cell to enter the baluster size.

Enter 2 [Inches] 1 / 4 [Done] for the baluster size.

Carrier 奈	6:25 AM	Ē
Baluster Function		
Input Parame	eters	
Run:		
0	7ft 8	- 1/2in
Rake Angle:		
0		0.00°
Member Width	:	
0	2	- 1/4in
Members at ends?		
0	select valu	es
Layout marks	at:	
0	С	enter
Maximum Ope	n Space:	
0		4in
Calculated Results		
		Done

The remaining input parameters appear to be what is needed for this analysis. For example, the **Maximum Open Space:** is already set to 4 inches. Scroll down to see the results and layout.

Carrier 🗢 6:27 AM	Carrier 奈 6:28 AM
Baluster Function	Baluster Function
Calculated Results	Member 9
Number of Members	4ft 4- ³ / ₁₆ in
15	Member 10
On-Center Spacing	4ft 10- 1/8in
5- 716III	Member 11
Open Space between Members	5ft 4in
3- 11/16in	Member 12
Lavout	5ft 9- ¹⁵ / ₁₆ in
Member 1	Member 13
4- ¹³ / ₁₆ in	6ft 3- 7/ଃin
Member 2	Member 14
10- ³ / ₄ in	6ft 9- ¹³ / ₁₆ in
Member 3	Member 15
1ft 4- 5/8in	7ft 3- 11/16in
	Done

Example 2: You have three sections on a deck, each of a different span (6' 8", 7' 9" and 4' 5"), and you want all of them to have the same spacing for the balusters. Code requires that the space between balusters be no greater than 4" and you will be using $2 - \frac{1}{4}$ " x $2 - \frac{1}{4}$ " balusters. What is the layout for each span?

This is a little more complicated example but a common problem. First we will solve for each section and note the calculated on-center spacing. Then, using the smallest on-center spacing calculated from the three, we will calculate the baluster layout for each section.

Input	Display
6 [Feet] 8 [Inches]	6ft 8in
[Conv] [Balstr]	see screens below

Calculate the spacing for the 6' 8" section:

Carrier 🗢 6:31 AM	Carrier 奈 6:32 AM	
Baluster Function	Baluster Functi	on
Analysis Type	Maximum Open Space:	4in
	Calculated Results	
Run:		13
O 6ft 8in Rake Angle:	On-Center Spacing	5- ⁷ /ଃin
Member Width:	Open Space between Memb	ers 3- ⁵ /sin
2- ¹ / ₄ in	Lavout	0- 7811
Members at ends?	Member 1	4 31 10
Layout marks at:	Member 2	4- ³ /4IN
Done Done		Done

Here we can see that the calculated On-Center Spacing is 5-7/8"". Be sure that the Analysis type is [Limit Opening] and the Maximum Open Space is 4". If you want, you can store the results of this calculation using the [Store] button (first, tap the actions button, at the bottom left).

To calculate the On-Center Spacing for the other sections, tap on the Run cell, enter the run value and then note the On-Center spacing. Here are the results:

So the smallest On-Center spacing is 5-7/8" and the largest 6-1/8". The range of opening sizes is 3-5/8 to 3-7/8". Any of these will pass code. But to minimize the amount of difference between sections (in spacing between the posts and the balusters at the ends) let's use the on-center value between the two extremes: 6 inches.

 $11_{-} \frac{1}{\sin}$

Now lets calculate the layout for each section for a 6" On-Center spacing. First, let's switch the Analysis Type to [Best-Fit].

Analysis Type		
Limit Opening	Evenly Space	On-Center
Input Paran	neters	
Ø		4ft 3in
Rake Angle:		
Ð		0.00°
Member Width:		
ð		2- ¹/₄in
Members at e	ends?	
Ø	at Star	t, at End
Layout marks	s at:	
Î		center

Next, change the Run to 6' 8" and the On-Center Spacing to 6- 1/16" (see Example 1 for an example on how to change these values).

Now you can scroll down to see the layout for section 1:

Calculated Results	Member 6	
Number of Members		2ft 7in
14	Member 7	
On-Center Spacing		3ft 1in
6in	Member 8	
Open Space between Members		3ft 7in
3- ³ / ₄ in	Member 9	
		4ft 1in
Layout	Member 10	
Member 1 $1 - \frac{1}{2}$		4ft 6- 15/16in
1- /8111 Member 2	Member 11	
7- ¹ /₀in		5ft 0- 15/16in
Member 3	Member 12	
1ft 1- $\frac{1}{16}$		5ft 6- 15/16in
Member 4	Member 13	
1ft 7- 1/16in		6ft 0- 7/8in
Member 5	Member 14	
2ft 1- 1/16in		6ft 6- ⁷ /ଃin

Next, enter a Run of 7' 9" for Section 2. Here is the layout for section 2:

Calculated Results	Member 7
Number of Members	3ft 1- 7/16ir
16	Member 8
On-Center Spacing	3ft 7- ¹/₂ir
6- '/ ₁₆ In	Member 9
Open Space between Members	4ft 1- 1/2ir
3- ¹³ / ₁₆ in	Member 10
Lavout	4ft 7- ⁹ / ₁₆ ir
Member 1	Member 11
1- ¹ /₀in	5ft 1- ⁵ / ₈ ir
Member 2	Member 12
7- ³ /16in	5ft 7- 11/16ir
Member 3	Member 13
1ft 1- ¹/₄in	6ft 1- ³ / ₄ ir
Member 4	Member 14
1ft 7- 1/4in	6ft 7- ³ / ₄ ir
Member 5	Member 15
2ft 1- ⁵ /16in	7ft 1- ¹³ / ₁₆ ir
Member 6	Member 16
2ft 7- ³ /8in	7ft 7- ⁷ / ₈ ir

And finally, enter a Run of 4' 3" for Section 3. Here is the layout for section 3:

Calculated Results	Member 3
Number of Members	1ft 1- ⁵ /16in
9	Member 4
On-Center Spacing	1ft 7- 7/16in
Onen Space between Members	Member 5
2 7/ in	2ft 1- 1/2in
5- 78111	Member 6
Layout	2ft 7- ⁵ / ₈ in
Member 1	Member 7
1- ¹/ଃin	3ft 1- 11/16in
Member 2	Member 8
7- 1/4in	3ft 7- ¹³ / ₁₆ in
Member 3	Member 9
1ft 1- ⁵ / ₁₆ in	4ft 1- ⁷ / ₈ in

Example 3: You have a staircase for a deck that you need to run the balusters on two rails (the upper hand rail and a lower rail to support the balusters). The spacing between balusters can be no more than 4", the Run of the staircase is 6' and the pitch of the stairs (Angle of Incline or the Rake Angle) is 33.27° (something you calculated using the [Stairs] function). You will be using 2- ¼" x 2- ¼" balusters. What is the layout for these balusters?

Enter the Baluster Calculation Screen

Input	Display
[Conv] [Balstr]	see screens below

If not already, switch the Analysis Type to "Limit Opening".

Analysis Type			
Limit Opening Evenly Space On-Center			

Now enter 6' for the Run, 33.27° for the Rake Angle, and 2- $\frac{1}{4}$ " for the Member Width.

Scroll down for the layout of the Balusters. Note that the layout values represent where to place the Balusters along the length of the Rails. Placing your tape measure from the start of the Rail to the end, you can mark the Rail using this layout and your balusters will be properly spaced.

[Bd Ft] Board Feet Function

- 1. Set the units for a quantity to board feet.
- 2. Convert a volume to board feet.
- 3. Convert a weight to board feet (using the density stored in [wt/vol]).

Examples:

1. Set the units for a quantity to board feet.

Input	Display
clear temporary memory	0
35.2 [Conv] [Bd Ft]	35.2bf

2. Convert a volume to board feet.

Input	Display
clear temporary memory	0
4 [m] x 37 [Conv] [cm] x 8 [Conv] [cm] = [m]	0.1184m ³
[Conv] [Bd Ft]	50.17508bf

3. Convert a weight to board feet (using the density stored in [wt/vol]).

Input	Display
clear temporary memory	0
465 [Conv] [lbs]	465lb
[Conv] [Bd Ft]	50.22bf

Notes:

- * Assumes 1.5 tons per cubic yard is stored in [wt/vol]
- When multiplying or dividing with mixed units, BuildCalc's display of results is dependent upon your region. If in North America, BuildCalc displays the results for lengths and areas in feet, and volumes in yards. Elsewhere, BuildCalc displays the results for lengths, areas, and volumes in meters. The default display units for lengths, areas and volumes can be changed via [Conv] [Prefs].

[Circle] Circle Function

Starting with version 2.0, BuildCalc's Circle function has been enhanced to display the most information with the least number of keystrokes. Because the first press of the [Circle] key is often used to store a diameter value for other calculations, no change has been made in function for the first key press. However, if the [Circle] key is pressed a second time, all Circle function results are displayed in a list.

The Circle function calculates the descriptive geometry for a circle given the following input scenarios:

- 1. Input a [Radius].
- 2. Input a Diameter ([Circle]).
- 3. Given two of the following for an arc:
 - [Arc] Angle
 - Chord Length ([Run])
 - Segment Length ([Rise])

Examples:

1. Input a Radius to calculate descriptive geometry for a circle.

Input	Display
clear temporary memory	0
6 [Feet] [Conv] [Radius]	Radius 6ft
[Circle]	Diameter 12ft
[Circle]	See results, below

Circle		
Area	440.007063	
Circumference	113.0973ft ²	
Diameter	37ft 8- ³/₃in	
	12ft	
Radius	6ft	

2. Input a Diameter to calculate the descriptive geometry for a circle.

Input	Display
clear temporary memory	0
6 [m] [Circle]	Diameter 6m
[Circle]	See results, below

Circle		
Area		
	28.27433m ²	
Circumference		
	18.85m	
Diameter		
	6m	
Radius		
	3m	

Note: See **"Finding the Radius or Diameter of an Arc"** in the arc function section.
[ClrAll] Clear All Function

In addition to those values cleared with $\bigcirc \bigcirc$, [ClrAll] (or [Conv]x) resets the values stored at the following keys to their default values:

[M1]	[M2]	[M3]
[M+]	[FtArea]*	[wt/vol]
[o.c.]	[MsnSz]*	[SprAng]*
[TreadW]*	[RiserH]*	[FloorH]*

*Note: These keys are not available by default starting in BuildCalc 2.1 since they are redundant with the new functionality available in the [Footng], [Msnry], [CmpMtr] and [Stair] keys. To regress to the functionality of BuildCalc prior to version 2.0, switch "Advanced Function Mode" to OFF in BuildCalc's preferences ([Conv] [Prefs]).

[cm] Centimeter Function

- 1. Set the units for a quantity to centimeters.
- 2. Convert a length, area or volume to centimeters.
- Convert a weight to cubic centimeters (using the density stored in [wt/vol].

Examples:

Input	Display
clear temporary memory	0
3 [Conv] [cm]	3cm
[Conv] [cm]	3cm ²
[Conv] [cm]	3cm ³

1. Set the units for a quantity to centimeters.

2. Convert a length to centimeters.

Input	Display
clear temporary memory O	0
56 [Inches]	56in
[Conv] [cm]	142.24cm

3. Convert a weight to cubic centimeters (using the density stored in [wt/vol]).

Input	Display
clear temporary memory O	0
0.125 [Conv] [lbs]	0.125lb
[Conv] [cm]	31.85645cm ³

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[CmpMtr] Compound Miter Function

BuildCalc's version 2.0 Advanced Compound and Simple Miter Function is a bit different (and a lot simpler to use) than the Compound Miter function in earlier versions. The biggest change is that the results are interactive - meaning that you can make changes to inputs without having to start your calculation from the beginning. Just tap on the parameter on the right of any cell in the "Input Parameters" section and then modify that parameter.

However, for those familiar with older versions, [CmpMtr] works as it did before ... but there is no need for the [SprAng] button. So now you can enter the Spring Angle along with the number of Corners and the Corner Angle any time you wish in the Input Parameters section of the Compound Miter Function.

And one more thing. Confused about how to layout Miter and Bevel results? You're not alone. Starting with BuildCalc 2.0, you can switch between Miter Saw results and Protractor "on the board" results (what you would measure using a hand held protractor). No more confusion and super easy flexibility.

The Compound Miter function calculates the table angle (Miter Angle) and the blade tilt angle (Bevel Angle) settings using the Spring and the Wall Corner Angle. In addition to interactively changing the input values of the [CmpMtr] function, Wall Corner Angle can be input prior to the press of the [CmpMtr] key using one of the following ways:

- 1. Input Wall Corner Angle directly (if it is greater than or equal to 25°).
- 2. Input number of room corners (if all of the rooms corner angles are equal and there are less than 25 corners).

Compound Miter Parameter Illustration

Examples:

<u>1. Input Wall Corner Angle directly (if Wall Corner Angle is \geq 25^{\circ}).</u>

Input	Display
clear temporary memory O	0
60 [CmpMtr]	See results, below

Compound + Simp	le Miters
Input Parameters	
Corner Angle:	
0	60.00°
Spring Angle:	
0	38.00°
Number of Corners:	
0	3
Results For:	
Miter Saw	Protractor

Calculated Results	
Compound Miter Angle	
	46.84°
Compound Bevel Angle	
	43.03°
Simple Miter Angle	
	60.00°

2. Input number of room corners (if all corner angles are equal and there are less than 25 corners).

Input	Display
clear temporary memory O	0
5 [CmpMtr]	See results, below

Compound + Simple Miters			
Input Paran	neters		
Corner Angle	ə:		
0		108.00°	
Spring Angle	:		
0		38.00°	
Number of C	orners:		
0		5	
Results For:			
0	Miter Saw	Protractor	
Calculated	Results		
Compound M	liter Angle		
		24.10°	
Compound Bevel Angle			
		27.59°	
Simple Miter	Simple Miter Angle		
		36.00°	

3. Use default corner angle (90°).

Input	Display
clear temporary memory O	0
[CmpMtr]	See results, below

Compound + Simple Miters			
Input Parar	neters		
Corner Angle	e:		
Ø		90.00°	
Spring Angle):		
ð		38.00°	
Number of C	orners:		
ð		4	
Results For:			
Ø	Miter Saw	Protractor	
Calculated	Results		
Compound M	liter Angle		
		31.62°	
Compound E	Bevel Angle		
		33.86°	
Simple Miter	Simple Miter Angle		
		45.00°	

[ColCon] Column / Cone Function

Starting with version 2.0, BuildCalc's Column/Cone function has been enhanced to display the most information with the least number of keystrokes. One press of the [ColCon] key and all Column/Cone function results are displayed in a list.

The Column/Cone function calculates descriptive geometry for a column and cone based upon a height value (stored in [Height]) <u>and</u> either a diameter (stored in [Circle]) or a [Radius].

Area Results:

Area results are for the curved surface (walls) of a column or cone and exclude the flat, circular surface(s).

Volume Results:

Think of the volume of a Column or Cone as the amount of something (like concrete) required to fill the column or cone.

Cone Angle Result: Cone Angle is the slope of the cone walls.

Examples:

1. Input a [Radius].

Input	Display
clear temporary memory	0
3 [Feet] [Height]	Height 3ft
9 [Inch] [Conv] [Radius]	Radius 9in
[Conv] [ColCon]	See results, below

Column-Cone			
Column Volume			
	9160.884in ³		
Column Area			
	2035.752in ²		
Cone Volume			
	0.06545yd ³		
Cone Area			
	7.286129ft ²		
Cone Angle: Base to Tip			
	75.96°		
Height			
	3ft		
Diameter			
	18in		

2. Input a Diameter ([Circle]).

Input	Display
clear temporary memory	0
0.6 [m] [Circle]	Diameter 0.6m
0.25 [m] [Height]	Height 0.25m
[Conv][ColCon]	See results, below

Column-Cone

Column Volume	
	0 070686m ³
	0.070000111
Column Area	
	0.471239m ²
Cone Volume	
	0.023562m ³
Cone Area	
	0.368049m ²
Cone Angle: Base	to Tip
	39.81°
Height	
_	0.25m
Diameter	
	0.6m

[COS] COSINE Function

Calculate the cosine for a given angle.

Example:

Calculate	the	cosine	for	38 '	۰.
-----------	-----	--------	-----	------	----

Input	Display
clear temporary memory O	0
38 [COS]	0.788011

[cost] Cost Function

Displays a cost calculation result with the local currency symbol (see note below).

Example:

1. Calculate the cost of a given amount of board feet.

Input	Display
clear temporary memory O	0
56 [Conv] [Bd Ft]	56bf
[x] 412 [Conv] [Cost]	56bf x \$412 per 1000bf = \$23.07
••	0
9 [yard] [yard] [yard]	9yd ³
[x] 123 [Conv] [Cost]	9yd ³ x \$123 per yd ³ = \$1107.00

Notes:

- If units are Board Feet ([BdFt]), calculator assumes unit price is local currency per 1000 board feet.
- BuildCalc uses the local currency symbol based on your iPhone or iPod's regional configuration. This configuration value is set in the Settings App at General / International / Regional Format.

[Diag] Diagonal Function

The Diagonal key can either:

- Calculate a Diagonal from any two of the following values stored:
 - [Pitch], [Rise], [Run]
- Calculate the Plumb and Level Cut Angles for a Common Rafter using two of the above stored values.
- Store a Diagonal value for other calculations.
- Recall a Diagonal value for display.

Examples:

1. Calculate the Common Rafter geometry from a given [Rise] and [Run].

Input	Display
clear temporary memory	0
12 [Feet] [Rise]	Rise 12ft
15 [Feet] [Run]	Run 15ft
[Diag]	Diagonal 19ft 2- ¹ / ₂ in
[Diag]	See results, below

Note: Diagonal values will be cleared from memory upon Θ Θ or [ClrAll].

-III Carrier ᅙ	8:02 PM	
Diagonal	- Regular Ra	after
Diagonal		
	19ft 2	- 1/2in
Plumb		
	3	8.66°
Level		
	5	1.34°
Triangle Area		
		90ft ²
Pitch		
	9- ⁵ /8ir	n/12in
Rise		
		12ft
Run		
		15ft
Store	0	Done

2. Enter and Recall a Diagonal.

Input	Display
clear temporary memory O	0
12 [Feet] [Diag]	Diag 12ft
٩	0
[Diag]	Diag 12ft

[dmsdeg] Angular Conversion Function

- 1. Provides for entry of an D:M:S value
- 2. Conversion of an angular value

Example:

Enter an angle in D:M:S (degree, minute, second) format and then convert it to other angular formats.

Input	Display
clear temporary memory O	0
Enter an angle in D:M:S format 23.16.45	DMS 23:16:45
[Conv] [dmsdeg]	23.28°
[dmsdeg]	Pitch 5- 3/16in
[dmsdeg]	% Pitch 43.02371
[dmsdeg]	% Slope 0.430237
[dmsdeg]	Radians 0.406298rad

[Drywal] Drywall Function

The Enhanced Drywall Function calculates the number of sheets of Drywall*, Sheathing or Plywood based on the below input scenarios. The Drywall Function has been enhanced to allow you to view multiple sheet sizes and edit the list of sheet sizes to suit your needs. See the examples below to learn how this is done.

The Drywall function calculates the number of sheets of Drywall*, Sheathing or Plywood based on the following inputs:

- 1. Stored [Length] and [Height].
- 2. Stored [Length] and [Width].
- 3. Stored [Length] only.
- 4. Input Area.
- 5. Input Length.
- 6. Room Mode: Stored [Length], [Width] and [Height].

Example:

1. Stored [Length] and [Height].

Input	Display
clear temporary memory O	0
48 [Feet] [Length	Length 48ft
9 [Feet] 6 [Inch] [Height]	Height 9ft 6in
۲	0
[Conv] [Drywall]	See results, below

.III Carrier 🤶	10:51 PM	
	Drywall	
Length		
		48ft
Height		Oft 6in
Area		
		456ft ²
Size / Sheet	ts	
4ft x 9ft /		
		12.66667
4ft x 10ft /		11.4
4ft x 12ft /		
		9.5
4ft x 14ft /	ę	8.142857
54in x 12ft /		
	8	8.444444
Don't see the size you want? Press [Edit Sizes] and add a new size using the [+] button.		
Edit Sizes St	ore Recall	Done

But let's say that the local building supply has a really good deal on Chinese drywall. It's size is 1000mm x 2000mm. How many sheets of that would you need? This is where the [Edit Sizes] button comes in handy. Try the following to get the result you want:

- 56 BuildCalc: Users Manual
 - •

Tap the [+] button to add a new size ٠

• Enter 1000 [Conv] [mm] x 2000 [Conv] [mm] [done] Note: if in metric mode, you do not need to press [Conv] to access the metric unit keys. Also, you can quickly switch between metric and imperial mode by swiping your finger across the [Yards] [Feet] [Inches] keys or the [m] [cm] [mm] keys.

.ull Ca	arrier 🗢 9:19 AM 📼	
Drywall		
	4ft x 9ft =	
•	4ft x 10ft [≡]	
•	4ft x 12ft [≡]	
•	4ft x 14ft [≡]	
•	54in x 12ft	
•	1000mm x 2000mm 🗏	
Don't see the size you want? Press [Edit Sizes] and add a new size using the [+] button.		
Can	ce) () +	

• Tap [Cancel] to exit the size editor

- Ill Carrier ক	9:21 AM	
Drywall		
		12.66667
4ft x 10ft /		11.4
4ft x 12ft /		9.5
4ft x 14ft /		8.142857
54in x 12ft	I	8.444444
1000mm x 3	2000mm /	21.18189
Don't see the size you want? Press [Edit Sizes] and add a new size using the [+] button.		
Edit Sizes	Store Recal	Done

The result: you'll need 22 sheets of this Chinese drywall for this job.

2. Stored [Length] only. How many 4'x10' sheets will be required to cover a length of 22'? Note that, since drywall widths tend to have similar widths, BuildCalc uses the drywall length to make this calculation.

Input	Display
clear temporary memory O O	0
22 [Feet] [Length]	Length 22ft
٥	0
[Conv] [Drywall]	See results, below

:Carrier 🤶 9	23 AM	D
Drywall		
Length		
		22ft
Size / Sheets		
4ft x 9ft /		
	2.4	44444
4ft x 10ft /		2.2
4ft x 12ft /		
	1.8	33333
4ft x 14ft /	1.5	71429
54in x 12ft /	1.8	33333
1000mm x 2000mm /		
Edit Sizes Store	Recall	Done

3. Input Area. You have a 48' x 9'6" area to cover with drywall. How many 4'x12' sheets are needed?

Input	Display
clear temporary memory O	0
48 [Feet] [x]	48ft
9 [Feet] 6 [Inch] =	456ft ²
[Conv] [Drywall]	See results, below

9 Carrier 🗇 ااس	:28 AM	Ē
Drywall		
Area		456ft ²
4ft x 9ft /	12	2.66667
4ft x 10ft /		11.4
4ft x 12ft /		9.5
4ft x 14ft /	8.	142857
54in x 12ft /	8.	44444
Edit Sizes Store	Recall	<i>i</i> Done

Room Mode: You have a 12' 6" x 15' room. The ceiling is 9' 6". You want to use 3/8" drywall on the walls and 1/2" drywall on the ceilings. In both cases, you plan on buy 4'x10' sheets.

Input	Display
clear temporary memory O	0
12 [Feet] 6 [Inches] [Length]	Length 12ft 6in
15 [Feet] [Width]	Width 15
9 [Feet] 6 [Inches]	Height 9ft 6in
[Conv] [Drywall]	See results, below

Drywall	
Length	
12ft 6in	
Width	
ΠCT Height	
9ft 6in	
Wall Area	
522.5ft ²	Size / Sheets for Ceiling or Floor
Ceiling or Floor Area	4ft x 9ft / 5.208333
187.51	4ft x 10ft /
Size / Sheets for Walls	4.6875
4ft x 9ft /	4ft x 12ft /
14.51389	3.90625
4ft x 10ft /	3.348214
13.0023	54in x 12ft /
10 88542	3.472222
4ft x 14ft /	1000mm x 2000mm /
9.330357	8.70966
54in x 12ft /	Don't see the size you want?
9.675926	Press [Edit Sizes] and add a new size using the [+] button.
1000mm x 2000mm / 2/1 27092	
24.21032	Edit Sizes Store Recall 🥡 Done

NOTE: Drywall is also called gypsum board, wallboard, plasterboard, rock lath, rigips, alçipan, and placoplatre - as well as a number of commercial names.

[Feet] Feet Entry and Conversion

- 1. Set the units for a quantity to feet
- 2. Convert a length, area or volume to feet
- 3. Switch between decimal and fractional display
- 4. Convert a weight to cubic feet

Examples:

Input	Display
clear temporary memory	0
6 [Feet]	6ft
[Feet]	6ft ²
[Feet]	6ft ³

1. Set the units for a quantity to feet.

2. Convert a length, area or volume to feet.

Input	Display
clear temporary memory	0
18 [lnch]	18in
[Feet]	1.5ft

5. Switch between deelingt and nactional display.	
Input	Display
clear temporary memory	0
33 [lnch] 7 [/] 16	33- ⁷ / ₁₆ in
[Feet]	2ft 9- ⁷ / ₁₆ in
[Feet]	2.786458ft

3. Switch between decimal and fractional display.

4. Convert a weight to cubic feet (using the density stored in [wt/vol]).

Input	Display
clear temporary memory	0
1.25 [Conv] [tons]	1.25T
[Feet]	22.5ft ³

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[Fence] Fence Material Estimation Function

Calculates the number of fence elements (pickets, panels, posts, rails) based on your input length for the fence row. Use the [Rails] key to store the number of rails per section used for this calculation.

Examples:

1. How many Pickets, Post and Rails are needed for a 75' fence row with 3 rails per section, posts spaced at 8' and with 3" pickets spaced at 4" centers.

Input	Display
clear temporary memory O	0
3 [Store] [Rails]	Rails 3
75 [Feet] [Length]	Length 75ft
[Conv] [Fence]	See results, below

	BuildCalc:	Users Manual	65
--	-------------------	---------------------	----

Fence	
Length	75ft
Rails	7.011
	3
O.C. Spacing / Qty Picke	ets-Posts
ort /	14
8ft /	11
O.C. Spacing / Rails	
6ft /	39
12ft /	19.5
8ft /	30
16ft /	15
Missing the spacing you Press [Edit Sizes] and a new spacing with the [+]	dd a button.
Edit Sizes Sto	ore Done

So you will need 11 Posts and 30 Rails ... but where is the result for 3" pickets spaced at 4" centers? Here's how to add them:

- First, tap the [Edit Sizes] button
- Then tap the [+] button
- Next, enter 4 [Inches] (this is the on-center spacing for these 3" pickets) and [Done]
- Now that you're done adding your additional spacing, click [Cancel].

Fence	
Length	
	75ft
Rails	0
	3
O.C. Spacing / Qty Pick	kets-Posts
6ft /	
04.1	14
8π /	11
4in /	
	226
O.C. Spacing / Rails	
6ft /	39
12ft /	
	19.5
8ft /	30
16ft /	50
	15
4in /	
	675
8in /	337.5
Missing the spacing yo Press [Edit Sizes] and new spacing with the I-	ou want? add a ⊦l button.

2.	You have	33 8'	fence	panels.	How	far	will	that	go?)
----	----------	-------	-------	---------	-----	-----	------	------	-----	---

Input	Display
clear temporary memory O	0
33 [Conv] [Fence]	See results, below

Fence	
Quantity	33
6ft /	198ft
8ft /	264ft
4in /	132in
Don't see the size you wa Press [Edit Sizes] and add new size using the [+] but	nt? I a ton.

Notes:

- The above example is based on the inputs of example 1.
- "So what is up with there being more results in the rails section than in the Pickets-Posts section?" Well, for some fences, you might have your posts spaced at 8' but you want to use 16' rails. Considering this, BuildCalc automatically calculates these results for you.
- "Argh! Why does all of my picket lengths show up in the rails count section. I mean, why can't BuildCalc see that it is a short distance and thus, it's not a rail?". Fair question. Unfortunately, it turns out to be harder to do this than it should be ... which means that I am stretching the current code too far. So, check back again with BuildCalc version 2.1. This will be fixed!

[Footng] Footing Function

Calculates the volume of a footing based on the following input scenarios:

- 1. Stored Length
- 2. Input Length

Example:

1. Volume of a footing based upon Stored Length.

Input	Display
clear temporary memory	0
22 [Feet] [Length]	Length 22ft
[Conv] [Footng]	See results, below

2. You have a 26' x 20' garage that calls for a 24" x 18" footer.

Input	Display
clear temporary memory	0
26 [Feet] [Width]	Width 26ft
20 [Feet] [Length]	Length 20ft
[Conv] [Footng]	See results, below

ull Carrier ᅙ 11:04 AM	D		
Footing			
Length			
	20ft		
Width	26ft		
Footing Perimeter	92ft		
Cross Section Area / Vo	olume		
264in² / 6.246	6914yd ³		
Don't see the size you want? Press [Edit Sizes] and add a new size using the [+] button.			
Edit Sizes Store	Done		

But wait a minute! 264in² isn't the size of foot needed for this calculation. How do we get results for a 18"x24" footer cross section? Try the following: • Tap [Edit Sizes] to start the size editor

Lap [Edit Sizes] to -메Carrier 중 11:07 #	start the size e	
Footi	ng	
Length	000	
Width	20ft	
Footing Perimeter	26ft	
rooting renneter	92ft	
Cross Section Are	a / Volume	
•	264in² ≡	
Don't see the size you want? Press [Edit Sizes] and add a new size using the [+] button.		
Cancel	•	

• Tap [+] to add a new size

• Enter 18 [Inches] x24 [Inches] [done]

• Tap [Cancel] to exit the size editor

Footing			
Longin	20ft		
Width	26ft		
Footing Perimeter	92ft		
Cross Section Area / Vo	lume		
264in² / 6.246	914yd ³		
18in x 24in / 10.22	2222yd ³		
Don't see the size you want? Press [Edit Sizes] and add a new size using the [+] button.			
Edit Sizes Store	Done		

Fractions! How to work with them in BuildCalc

There are a couple of ways for BuildCalc to give you fractional

results. Here are some examples:

Entering Fractions:

Let's say that you have a run that is 13' 6-3/4" and you want to mark it into 8 equal sections. How would you do that?

Input	Display
13 [Feet] 6 [Inches] 3/4	13ft 6- ³ / ₄ in
÷ 8 =	1ft 8- ³ / ₈ in

Converting Decimals to Fractions:

So, that is a pretty simple example. Now, let's try something more complicated. This time you have 1 yard of concrete and you want to see how long of 5" deep by 36" wide sidewalk can be poured with that concrete.

Input	Display
1 [Yards] [Yards] [Yards]	1yd³
÷ 5 [Inches]	1yd³ ÷ 5in
÷ 3 [Feet]	64.8ft ² ÷ 3ft
=	21.6ft
[Inches]	259.2in
[Inches]	259- ³ / ₁₆ in
But, let say you want to see the results in a different denominator. In other words, instead of the results being in 16ths of an inch, you want to see the results in quarters of an inch. There are a couple of ways of doing this as well. First, if you have a result of a calculation, it is pretty easy to see that result in a different denominator with a couple of keystrokes. Using the results of the previous example ...

Input	Display
from the previous example	259- ³ / ₁₆ in
[Conv] [1/4]	259- ¹ / ₄ in
and for grins [Conv] [1/64]	259- ¹³ / ₆₄ in
[Conv] [1/32]	259- ³ / ₁₆ in

Notice that the results in 32nds is the same as it is in 16ths. This is because 259- $^{3}/_{16}$ " (the same as 259- $^{6}/_{32}$ ") is more precise than 259- $^{5}/_{32}$ " or 259- $^{7}/_{32}$ " ... and for convenience, BuildCalc rounds 259- $^{6}/_{32}$ " to 259- $^{3}/_{16}$ " for you.

The second way in which you can influence the display of fractional results is to change the default denominator. This is done via BuildCalc's preferences.

Input	Display
[Conv] [Prefs]	BuildCalc's preferences menu
scroll down and select "Fractional Resolution"	
select the denominator to display your fractional results	

[Height] Height Function

- Store and Recall a height for use by the [perArea], [DryWal] and [ColCon] (Column/Cone) functions.
- 2. Calculate Volume, Wall Area and Room Area (walls + ceiling).

Examples:

1. Store and Recall a height for use by the [Msnry], [DryWal], and [ColCon] (Column/Cone) functions.

Input	Display
clear temporary memory O	0
[Recall] [Height]	0
9 [Feet] 6 [Inch] [Height]	Height 9ft 6in
Θ	0
[Height]	Height 9ft 6in

2. Calculate Volume, Wall Area and Room Area (walls + ceiling).

Input	Display
clear temporary memory O	0
22 [Feet] [Length]	Length 22ft
18 [Feet] 8 [Inch] [Width]	Width 18ft 8in
9 [Feet] 6 [Inch] [Height]	Height 9ft 6in
[Height]	See results, below

.ull Carrier 🤶	10:15 AM	Ē
	Height	
Volume		
, channe	3901.333	3ft ³
Wall Area		
	772.6667	7ft ²
Room Area (Nall + Ceiling)	
	1183.333	3ft²
Floor or Ceiling Area		
	410.6667	7ft²
Square-up (Diagonal)		
	28ft 10- 1/	4in
Length		
	2	2ft
Width		
	18ft 8	8in
Height		
	9ft (bin
Store	\boldsymbol{v}	Done

[Hip/V] Hip/Valley Rafter Function

In other constructions calculators, setting up a calculation for a Regular or Irregular hip roof can be a real puzzle. Starting with BuildCalc 2.0, this is no longer the case. Inputs are all in one place, clearly labeled, and all have "on the spot" help to provide you with the missing pieces. In addition, BuildCalc's Hip/Valley function has been enhanced to display the most information with the least number of keystrokes. One press of the [Hip/V] key and all Hip/Valley function results are displayed in a list – and fast. And the [Hip/V] function is now interactive. What to change input values? Change the Minor Pitch? Switch between Regular and Irregular Hip Roof analysis? You can do this and more. Lastly, your results will be updated automatically - without you needing to remember what key to press. All the examples below illustrate this new feature.

For those experienced with BuildCalc, we made sure that you would have to make no compromises - the functionality is still there (see example 3) in both keystroke and interactive form. Version 2.0's [Hip/V] key can still calculate the layout geometry for a Hip or Valley Rafter based on the Regular and Irregular roof geometry, as described by the values saved at two of the following: [Pitch], [Rise], [Run] and [Diag]. See the examples below to see how this works.

And one more thing. Confused about how to layout Miter and Bevel results? You're not alone. Starting with BuildCalc 2.0, you can switch between Miter Saw results and Protractor "on the board" results (what you would measure using a hand held protractor). Less confusion and more flexibility.

Examples:

1. Regular Hip/Valley Rafter Calculation with a 15' rise and a 7- 1/2" pitch.

Input	Display
clear temporary memory O	0
[Hip/V]	See results, below

ll Carrier 중 3:06	PM 🔳	
Hip/Valley Function		
Analysis Type		
Reg	ular Irregular	
Input Parameters	;	
Rise:		
0	12ft	
Run:		
0	15ft	
Pitch:		
Ø	38.66°	
Results For:		
<i>d</i> Miter	Saw Protractor	
Calculated Resul	ts	
Store	Done	

In the above interactive screen, enter 15 for the rise and 7[Inches]1/2 for the Pitch. Notice that, if the units stay the same (like when you changed the Rise from 12' to 15') then you don't have to enter the units! On the flip side, when you changed the pitch from degrees to inches per 12" pitch, you changed units - and thus had to enter the units. Below are the results:

BuildCalc: Users Manual 77

Analysis Type		
	Regular	Irregular
Input Param	eters	
Rise:		15ft
Run:		24ft
Pitch:	7-	¹/₂in/12in
Results For:	Miter Saw	Protractor
Calculated F	Results	
Hip/Valley Rat	fter Length 371	ft 1- ⁵ /16in
Plumb Cut		66.16°
Level Cut		23.84°
Cheek Cut - o	n Saw's Bev	el Gauge 45.00°
Hip Backing A	Angle	22.01°
Dihedral Angl	e	135.98°
Plan Angle		45.00°
Hip/Valley Rat	fter Pitch	23.84°
Purlin Miter A	ngle	40.30°
Purlin Bevel A	Angle	22.01°
Sheathing An	gle	49.70°
Total Hip/Vall	ey Roof Area 67	9.2466ft²

Also note that you can quickly switch between Regular and Irregular Hip/Valley Rafter Calculations using the [Regular / Irregular] switch at the top of the Hip/Valley Function screen.

2. Irregular Hip/Valley Rafter Calculation

Input	Display
clear temporary memory O	0
12 [Feet] Rise	Rise 12ft
15 [Feet] Run	Run 15ft
[Hip/V]	See results, below

Level Cut		
	29.50°	
Cheek Cut - on Saw's Bevel Gauge		
	45.00°	
Hip Backing Angle		
	26.21°	
Plan Angle		
	45.00°	
Hip/Valley Rafter Pitch		
	29.50°	
Purlin Miter Angle		
	37.99°	
Purlin Bevel Angle		
	26.21°	
Sheathing Angle		
	52.01°	
Store 🥡	Done	

3. Irregular Hip/Valley Rafter Calculation assuming an Irregular Pitch of 30°.

Input	Display
clear temporary memory O	0
12 [Feet] Rise	Rise 12ft
15 [Feet] Run	Run 15ft
30 [Hip/V]	See results, below

	Calculated Results
	Hip/Valley Rafter Length
ull Carrier 🗢 7:11 AM 📟	24ft 4- ⁷ / ₁₆ in
Hip/Valley Function	Plumb Cut
	60.50
Analysis Type	Level Cut
	29.50°
Regular Irregular	Cheek Cut - on Saw's Bevel Gauge
	45.00°
Input Parameters	Hip Backing Angle
Rise:	26.21°
0 12ft	Plan Angle
Major Run:	45.00°
0 15ft	Hip/Valley Rafter Pitch
Minor Run:	29.50°
20ft 9- ⁷ / ₁₆ in	Purlin Miter Angle
Major Pitch:	37.99°
0 38.66°	Purlin Bevel Angle
Minor Pitch:	26.21°
0 30.00°	Sheathing Angle
Results For:	52.01°
Miter Saw Protractor	Total Hip/Valley Roof Area
	288.1406ft ²

Definitions:

Notes:

- The above image illustrates the Cheek Cut Angles for an Irregular Pitch Roof.
- For a Regular Pitch Roof, Cheek Cut Angle 1 = Cheek Cut Angle 2.

Types of Purilins (BuildCalc calculates Under and Butt Purlins)

Illustration of Hip/Valley Backing Angles

Valley

Illustration of Hip/Valley Roof Areas

Notes:

- BuildCalc's purlin calculations are for purlins that are at right angles to rafters (common purlins, butt purlins and under purlins). For vertical purlins, instead use the associated plan angle for the miter angle and 90° for the bevel angle. For battens (or over-purlins) switch the side (Miter) and edge (Bevel) results.
- Quickly switch between Regular and Irregular Hip/Valley calculations using the [Regular-Irregular] switch at the top of the Hip/Valley Function view.

[Inch] Inch Entry and Conversion

- 1. Set the units for a quantity to inches
- 2. Convert a length, area or volume to inches
- 3. Switch between decimal and fractional display
- 4. Convert a weight to cubic inches

Examples:

1. Set the units for a quantity to inches.

Input	Display
clear temporary memory	0
4 [Inch]	4in
[lnch]	4in ²
[lnch]	4in ³

2. Convert a length, area or volume to inches.

Input	Display
clear temporary memory	0
18 [Conv][cm]	18cm
[lnch]	7- ¹ / ₁₆ in

Input	Display
clear temporary memory	0
33 [lnch] 7 [/] 16	33- ⁷ / ₁₆ in
[lnch]	33.4375in

3. Switch between decimal and fractional display.

4. Convert a weight to cubic inches (using the density stored in [wt/vol]).

Input	Display
clear temporary memory	0
25 [Conv] [lbs]	25lb
[Inch]	338.8in ³

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[IrJack] Irregular Jack Rafter Function

The Irregular Jack Rafter Layout Function provides the following layout information for hip roofs beyond the information provided by the [Hip/V] (Hip/Valley Rafters) Function - with minimum hassle for you.

- Incremental change in Irregular Jack Rafter Lengths
- Lengths of each Irregular Jack Rafter
- Irregular Jack Rafter Plumb Cut Angle
- Irregular Jack Rafter Level Cut Angle
- Irregular Jack Rafter Cheek Cut Angle

Information required for this function includes:

- 1. An Irregular (Minor) Common Rafter Pitch, entered with the [IrPitch] key.
- 2. Two of the following values to describe the Regular Common Rafter geometry:
 - [Pitch]
 - [Rise]
 - [Run]
 - [Diag]
- 3. On-Center spacing stored in [o.c.]
- 4. [Prefs] Jack Rafters, either:
 - Largest to Smallest
 - Smallest to Largest
- 5. [Prefs] *Irregular Jack Spacing* setting, either **On-Centers** or **Mating**. See illustrations, below, for more explanation.

Also, if an Irregular Pitch is stored, then subsequent presses of the [IrJack] key will switch between Irregular and Regular Jack Rafter results. If no Irregular Pitch is stored, the IrJack key will function the same as the [Jack] key In addition to [IrPitch], calculations for Irregular Jack Rafters are based upon if the [Prefs] Irregular Jack Spacing is set to either On-Centers or Mating. The next two illustrations help explain the difference.

Plan View of Irregular Hip/Valley layout with Rafters mating at the hip/valley.

Plan View of Irregular Hip/Valley layout with rafters spaced at the **on-center** distance.

Example of an Irregular Hip/Valley and Jack Rafter calculation: See [Jack] for Regular Hip/Valley examples.

Part A: Setup [Prefs] for Ascending Jack Order and Mating Jack Spacing. *Note: Don't forget to undo these changes!*

Input	Display
clear temporary memory O	
[Conv] [Prefs]	See below

Il Carrier 🤶	8:04 PM	 ;
Preferences		
	auto	precision
Degree Display	1	
		0.00°
Function Pre	sets	
Calculate Rake	Wall Stude	5:
	Shor	test First
Calculate Arched Wall Studs:		
Outside of the Arc		
Calculate Jack	Rafters:	
	Long	gest First
Space Minor Ja	ack Rafters	:
	0	n-Center
Protractor Che	ek Cut?	OFF
	i	Done

Part B: Common Rafter Layout.

Input	Display
clear temporary memory	0
40 [Inch] [Run]	Run 40in
7 [lnch] 1 [/] 2 [Pitch]	Pitch 7- ¹ / ₂ in
[Diag]	Diagonal 47- ³ / ₁₆ in
[Diag]	See results below

Lull Carrier 🤶	8:52 PM	
Diagonal -	Regular R	after
Diagonal		
	14ft 1-	¹³ / ₁₆ in
Plumb		
	3	32.01°
Level		
	Ę	57.99°
Triangle Area		
		45ft²
Pitch	7 1/ 5	40:
	/- '/2	n/12in
Rise		7ft Gin
Bun		
Kun		12ft
		1211
Store	0	Done

Part C: Enter Irregular Pitch and calculate the Irregular Hip/Valley rafter length and cut angles.

Input	Display
Note: Do not clear from above. Use stored values.	57.99°
9 [lnch] [Conv] [lrPitch]	See results below

-11.0	Cheek Cut 1	
∴in carrier -> 9:54 AW		50.19°
Hip/Valley Function	Cheek Cut 2	
Analysis Type		39.81°
Anarysis Type	Major Hip Backing Angle	
Regular Irregular		70.17°
	Minor Hip Backing Angle	
Input Parameters		62.55°
Rise:	Major Plan Angle	
0 7ft 6in		50.19°
Major Run:	Minor Plan Angle	
0 12ft		39.81°
Minor Run:	Hip/Valley Rafter Pitch	
0 10ft		25.65°
Major Pitch:	Major Purlin Miter Angle	
0 7- ¹ /₂in/12in		35.25°
Minor Pitch:	Major Purlin Bevel Angle	
0 9in/12in		19.83°
Results For:	Minor Purlin Miter Angle	
<i>Miter Saw on the stick</i>		43.83°
	Minor Purlin Bevel Angle	
Calculated Results		27.45°
Irregular Hip/Valley Rafter Length	Major Sheathing Angle	
17ft 3- 15/16in		54.75°
Plumb Cut	Minor Sheathing Angle	
64.35°		46.17°
Level Cut		_
25.65°	Store 🥑	Done

Part D: Display the Irregular Jack Rafter Layout*.

Input	Display
Note: Do not clear from above. Use stored values.	
[Conv] [IrJack]	See results below

Scroll down to see all of the results. Where are the regular jack rafter layout dimensions? Tap [Done] and then tap [Jack] to see them. Repeated taps of [Jack] switch between Irregular and Regular Jack Rafter Layout display.

[IrPitch] Irregular Pitch Function

The Irregular Pitch Function is for the storage and recall of a Minor (Irregular) Roof Pitch. Its value is used by the [Hip/V] and [Jack] Functions.

Note that, starting with BuildCalc 2.0, Minor (Irregular) Pitch can be directly entered into the [Hip/V] function.

See [Hip/V] for more instruction.

[Jack] Jack Rafter Function

The Enhanced Jack Rafter Layout Function provides the following layout information for hip roofs beyond the information provided by the [Hip/V] (Hip / Valley Rafters) Function - with the minimum amount of hassle for you.

- Incremental change in Jack Rafter Lengths
- Lengths of each Jack Rafter
- Plumb Cut Angle
- Level Cut Angle
- Cheek Cut Angle

Information required for this function includes:

- 1. Two of the following values to describe the Regular Common Rafter geometry:
 - [Pitch]
 - [Rise]
 - [Run]
 - [Diag]
- 2. On-Center spacing stored in [o.c.]
- 3. [Prefs] Jack Rafters, either:
 - Largest to Smallest
 - Smallest to Largest

Also, if an Irregular Pitch is stored in [IrPitch] then more presses of the [Jack] key will switch between Minor (Irregular) and Common (Regular) Jack Rafter results.

In addition to [IrPitch], calculations for Irregular Jack Rafters are based upon if the [Prefs] *Irregular Jack Spacing* is set to either **On-Centers** or **Mating**. See illustrations, below for more explanation.

Irregular Hip/Valley layout with Rafters **mating** at the hip/valley.

Example of a Regular Hip/Valley and Jack Rafter calculation: (see [IrJack] for an Irregular Hip/Valley example.)

Input	Display
clear temporary memory	0
12 [Feet] [Run]	Run 12ft
7 [lnch] 1 [/] 2 [Pitch]	Pitch 7- ¹ / ₂ in
[Diag]	Diagonal 14ft 1- ¹³ / ₁₆ in
[Diag]	See results below

Lull Carrier ᅙ	8:52 PM	P
Diagonal	- Regular Ra	fter
Diagonal		
	14ft 1- 1	¹³ / ₁₆ in
Plumb	0	0.048
Level		2.01°
Level	5	7.99°
Triangle Area		4502
Dital		45ft²
Pitch	7- ¹/₂in	/12in
Rise	7	ft 6in
Run		
		12ft
Store	0	Done

Part B: Hip/Valley rafter length and cut angles.

Input	Display
Note: Do not clear from above. Use stored values	
[Hip/V]	See results below

Calculated Results		
Hip/Valley Rafter Length		
181	ft 6- 5/8in	
Plumb Cut		
	23.84°	
Level Cut		
	66.16°	
Cheek Cut		
	45.00°	
Hip Backing Angle		
	22.01°	
Plan Angle		
	45.00°	
Hip/Valley Rafter Pitch		
	23.84°	
Purlin Miter Angle		
	49.70°	
Purlin Bevel Angle		
	67.99°	
Sheathing Angle		
	49.70°	

12ft

Done

Part C: Jack Rafter Layout.

Input	Display
Note: Do not clear from above. Use stored values	
[Jack]	See results below

.ull Carrier 奈 9:11 PM 📼	
Jack Rafters Layout	
Jack Rafter On-Center Spacing	
16in	
Jack Rafter Length Increment	Jack Rafter Plumb Cut
1ft 6- 7/8in	32.01°
Jack Rafter 1 Length	Jack Rafter Level Cut
12ft 6- ¹⁵ / ₁₆ in	57.99°
Jack Rafter 2 Length	Jack Rafter Cheek Cut
11ft 0- 1/16in	45.00°
Jack Rafter 3 Length	Pitch
9ft 5- 3/16IN	7- 1/2in/12in
Jack Rafter 4 Length	Irregular Pitch
/π 10- ³ / ₁₆ In	7- ¹/₂in/12in
Jack Rafter 5 Length	Rise
Ulack Pafter 6 Length	/ft 6in
Aft 8- 5/oin	Run
Jack Rafter 7 Length	12π
3ft 1- 3/4in	Irregular Run
Jack Rafter 8 Length	121
1ft 6- 7/sin	
Jack Rafter 9 Length	
Oft	Store 🥡 Done

[kg] Kilogram Function

- 1. Set the units for a quantity to kilograms
- 2. Convert a weight to kilograms
- 3. Convert a volume to kilograms (using the density stored in [wt/vol])

Examples:

1. Set the units for a quantity to kilograms.

Input	Display
clear temporary memory O	0
3 [Conv] [kg]	3kg

2. Convert a weight to kilograms.

Input	Display
clear temporary memory	0
56 [Conv] [lbs]	56lb
[Conv] [kg]	25.40117kg

3. Convert a volume to kilograms (using the density stored in [wt/vol]).

Input	Display
clear temporary memory	0
11 [Yard] [Yard] [Yard]	11yd ³
[Conv] [kg]	14968.55kg

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[lbs] Pounds Function

- 1. Set the units for a quantity to pounds
- 2. Convert an weight to pounds
- 3. Convert a volume to pounds (using the density stored in [wt/vol])

Examples:

1. Sets the units for a quantity to pounds.

Input	Display
clear temporary memory O	0
3.7 [Conv] [lbs]	3.7lb

2. Convert a weight to pounds.

Input	Display
clear temporary memory O	0
12 [Conv] [kg]	12kg
[Conv] [lbs]	26.45547lb

3. Convert a volume to pounds (using the density stored in [wt/vol]).

Input	Display
clear temporary memory	0
3.5 [Feet] [x] 4 [Feet] [x] 4 [Inch] [=]	0.17283yd ³
[Conv] [lbs]	518.5185lb

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[Length] Length Function

- 1. Enter a length value to be used in other functions*
- 2. Recall the stored length value

Examples:

1. Enter a length value to be used in other functions*.

Input	Display
clear temporary memory O	0
13 [Feet] 6 [Inch] 3 [/] 8 [Length]	Length 13ft 6- ³ / ₈ in

2. Recall the stored length value.

Input	Display
clear temporary memory	0
[Recall] [Length]	Length 13ft 6- ³ / ₈ in

*Length is used in the following functions:

Function	Calculates
[Width]	Area, square-up and perimeter
[Height]	Volume, wall area, and room area
[Msnry]	Number pieces of masonry, of size [MsnSz], that can fill a length or area.
[Footng]	Volume of a footing
[Drywall]	Sheets of 4'x8', 4'x9', 4'x10', and 4'x12' drywall.
[Roof]	Area, Squares, and 4'x8' sheets to cover a roof
[qty@oc]	The number of Vertical Members, spaced at [o.c.], that will span a length.

[m tons] Metric Tons Function

- 1. Set the units for a quantity to metric tons.
- 2. Convert a weight to metric tons.
- 3. Convert a volume to metric tons (using the density stored in [wt/vol])

Examples:

1. Set the units for a quantity to metric tons.

Input	Display
clear temporary memory O	0
3 [Conv] [m tons]	3MT

2. Convert a weight to metric tons.

Input	Display
clear temporary memory	0
12 [Conv] [ton]	12T
[Conv] [m ton]	10.88622MT

3. Converts a volume to metric tons (using the density stored in [wt/vol])

Input	Display
clear temporary memory O	0
11 [Yard] [Yard] [Yard]	11yd ³
[Conv] [m tons]	14.96855MT

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[M-] Negative Cumulative Memory Function

- [M+] Adds the current value to the cumulative memory value.
- [M-] Subtracts the current value from the cumulative memory.
- [Recall] [M+] Recalls cumulative memory value, average and count.
- [M-R/C] or [Recall] [Recall] clears the cumulative memory.

Example:

- 1. First, sum three numbers (5, 10, 15) and get the cumulative statistics on those numbers.
- 2. Next, add a negative number (-8) to this cumulative sum and then get the cumulative statistics on this new list of numbers.

Input	Display
clear all memory [Conv] [ClrAll]	0
5[M+] 10[M+] 15[M+]	M+ 15
[Recall] [M+]	M+Total 30
[M+]	M+Avg 10
[M+]	M+Count 3
[clr] [clr]	0
[M-]	M+ 8
[Recall] [M+]	M+Total 22
[M+]	M+Avg 5.5
[M+]	M+Avg 4
clear cumulative memory [Conv] [M-R/C]	4
[M-R/C] Clear Cumulative Memory

- [M+] Adds the current value to the cumulative memory value
- [M-] Subtracts the current value from the cumulative memory
- [Recall] [M+] Recalls cumulative memory value, average and count
- [M-R/C] or [Recall] [Recall] clears the cumulative memory

Example:

- 1. First, sum three numbers (5, 10, 15) and get the cumulative statistics on those numbers.
- 2. Next, add a negative number (-8) to this cumulative sum and then get the cumulative statistics on this new list of numbers.

gralnput	Display
clear all memory [Conv] [ClrAll]	0
5[M+] 10[M+] 15[M+]	M+ 15
[Recall] [M+]	M+Total 30
[M+]	M+Avg 10
[M+]	M+Count 3
[clr] [clr]	0
[M-]	M+ 8
[Recall] [M+]	M+Total 22
[M+]	M+Avg 5.5
[M+]	M+Avg 4
clear cumulative memory [Conv] [M-R/C]	4

[m] Meter Function

- 1. Set the units for a quantity to meters
- 2. Convert a length, area or volume
- Convert a weight to cubic meters (using the density stored in [wt/vol])

Example:

Input	Display
clear temporary memory O	0
3 [m]	3m
[m]	3m ²
[m]	3m ³

1. Set the units for a quantity to meters

2. Convert a length, area or volume to meters

Input	Display
clear temporary memory O	0
[m]	56in
[m]	1.4224m
[m]	142.24cm
[m]	1422.4mm
[m]	1.4224m

3. Convert a weight to cubic meters (using the density stored in [wt/vol]).

Input*	Display
clear temporary memory	0
1.25 [Conv] [m tons]	1.25MT
[m]	0.702315m ³

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[M+] Add to Cumulative Memory

- [M+] Adds the current value to the cumulative memory value
- M-] Subtracts the current value from the cumulative memory
- [Recall] [M+] Recalls cumulative memory value, average and count
- [M-R/C] or [Recall] [Recall] clears the cumulative memory

Example:

1. First, sum three numbers (5, 10, 15) and get the cumulative statistics on those numbers.

2. Next, add a negative number (-8) to this cumulative sum and then get the cumulative statistics on this new list of numbers.

Input	Display
<i>clear all memory</i> [Conv] [ClrAll]	0
5[M+] 10[M+] 15[M+]	M+ 15
[Recall] [M+]	M+Total 30
[M+]	M+Avg 10
[M+]	M+Count 3
[clr] [clr]	0
[M-]	M+ 8
[Recall] [M+]	M+Total 22
[M+]	M+Avg 5.5
[M+]	M+Avg 4
clear cumulative memory	4

[M1] Permanent Memory Function

- 1. Stores a value to Permanent Memory
- 2. Recalls a value from Permanent Memory

Examples:

1. Stores a value to Permanent Memory.

Input	Display
clear temporary memory O	0
11 [Yard] [Yard] [Yard]	11yd ³
[Store] [M1]	11yd ³

2. Recalls a value from Permanent Memory.

Input	Display
clear temporary memory	0
Recall] [M1]	11yd ³

[M2] Permanent Memory Function

- 1. Stores a value to Permanent Memory
- 2. Recalls a value from Permanent Memory

Examples:

1. Stores a value to Permanent Memory.

Input	Display
clear temporary memory O	0
11 [Yard] [Yard] [Yard]	11yd ³
[Store] [M2]	11yd ³

2. Recalls a value from Permanent Memory.

Input	Display
clear temporary memory O	0
[Recall] [M2]	[Recall] [M2]

[M3] Permanent Memory Function

- 1. Stores a value to Permanent Memory
- 2. Recalls a value from Permanent Memory

Examples:

1. Stores a value to Permanent Memory.

Input	Display
clear temporary memory	0
11 [Yard] [Yard] [Yard]	11yd ³
[Store] [M3]	11yd ³

2. Recalls a value from Permanent Memory.

Input	Display
clear temporary memory O	0
[Recall] [M3]	11yd ³

[mm] Millimeter Function

- 1. Set the units for a quantity to millimeters
- 2. Convert a length, area or volume to millimeters.
- Convert a weight to cubic millimeters (using the density stored in [wt/vol])

Example:

1. Set the units for a quantity to millimeters.

Input	Display
clear temporary memory	0
3 [Conv] [mm]	3mm
[Conv] [mm]	3mm ²
[Conv] [mm]	3mm ³

2. Convert a length, area or volume to millimeters.

Input	Display
clear temporary memory	0
56 [lnch]	56in
[Conv] [mm]	1422.4mm

3. Convert a weight to cubic millimeters (using the density stored in [wt/vol]).

Input	Display
clear temporary memory O	0
0.125 [Conv] [lbs]	0.0125lb
[Conv] [mm]	3185.645mm ³

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].

[Msnry] Masonry Function

The Enhanced Masonry Function calculates the pieces of masonry (Bricks, Blocks, Tile, Pavers, etc.) based on the below input scenarios. Also note that pieces can also be anything for which you know the area of one "piece", such as a plank, a shingle, a piece of sheathing, etc. The Masonry function has been enhanced to allow you to view multiple piece sizes and edit the list of piece sizes to suit your needs. See the first example below to learn how this is done.

The Enhanced Masonry Function uses one of the following inputs to calculate an estimate how how many pieces of masonry you may need:

- 1. Stored [Length] and [Height].
- 2. Stored [Length] and [Width].
- 3. Input Area.
- 4. Stored [Length] only.
- 5. Input Length.
- 6. Room Mode: Stored [Length], [Width] and [Height].

Examples:

1. Stored Length and Height. How many 6"x6" tile is required for a hallway 22' by 6' 6"? Note that Height could have been used in this example with identical results.

Input	Display
clear temporary memory	0
22 [Feet] [Length]	Length 22ft
6 [Feet] 6 [Inch] [Height]	Height 6ft 6in
[Conv] [Msnry]	See results, below

(
Length	22ft
Width	
Widen	
	6ft 6in
Area	
, lou	4 4 0 612
	143m²
Piece Size / Pieces	
8in x 8in /	
	321 75
	521.75
8in x 12in /	
	214.5
Qin v 46in /	211.0
	160.875
4in x 16in /	
	204 75
	321.75
8in x 24in /	
	107 25
	107.20
Don't see the size you	u want?
Press [Edit Sizes] and	d add a
new size using the [+	I button.
the the denig the [1	1
Edit Sizes Store Recall	1 Done

But wait a minute! Where is 6"x6"!?!? Now is your chance to customize the Masonry function for you. Create a 6"x6" tile size using the following steps:

• Tap the [Edit Sizes] button to enter edit mode.

Tap the [+] button to add a new size
 Ill Carrier
 10:00 PM

• Tap in 6 [Inches] x6 [Inches] [done] to enter your new size.

• Now, using the 3 little bars to the right of '6"x6", drag it to the top

• Tap [Cancel] to finish.

Lull Carrier 🗢 10:02 PM		
Masonry per A	Masonry per Area	
Length		
	22ft	
Width	000	
	6ft 6in	
Area	143ft ²	
Piece Size / Pieces		
6in x 6in /	570	
Qin y Qin /	572	
	321.75	
8in x 12in /	214.5	
8in x 16in /		
Edit Sizes Store Recall	Done	

2. Input Area. now mach o	
Input	Display
clear temporary memory ()	0
22 [Feet] [x]	22ft x
6 [Feet] 6 [Inch] =	143ft ²
[Conv] [Msnrv]	See results, below

2. Input Area. How much 6"x6" tile for a 22'x6'6" area?

Jull Carrier ᅙ 10:04 PM	Ē
Masonry per	Area
Area	11000
	143ft ²
Piece Size / Pieces	
6in x 6in /	
	572
8in x 8in /	
	321.75
8in x 12in /	
	214.5
8in x 16in /	
	160.875
4in x 16in /	
	321.75
8in x 24in /	
Edit Sizes Store Recall	Done

3. Stored Length only. Let's say you have a 75' border you wish to fill wit 16" <u>culture stone. How many pieces will you need?</u>

Input	Display
clear temporary memory O	0
22 [Feet] [Length]	Length 22ft
Θ	0
[Conv] [Msnry]	See results, below

Il Carrier 奈 10:11 PM	
Masonry per Length	
Length	
	75ft
Piece Size / Pieces	
16in /	
	56.25
24in /	07.5
	37.5
6ft /	10 5
06.1	12.5
817	9.375
Don't see the size you want? Press [Edit Sizes] and add a	
Edit Sizes Store	Done

4. Input Length.

Input	Display
clear temporary memory O	0
22 [Feet]	22ft
[Conv] [Msnry]	See results, below

Larrier 🗢 10:13 PM	
Masonry per Len	gth
Length	
	22ft
Piece Size / Pieces	
16in /	
	16.5
24in /	
00.1	11
бπ / З.(666667
8ft /	
	2.75
Don't see the size you want? Press [Edit Sizes] and add a	
Edit Sizes Store	Done

[o.c.] On Center Memory

- 1. Enter an on-center value to be used in other functions*
- 2. Recall the stored on-center value

Example:

1. Enter an on-center value to be used in other functions*.

Input	Display
clear temporary memory O	0
16 [Store] [o.c.]	On-Center Spacing 16in

2. Recall the stored on-center value.

Input	Display
clear temporary memory O	0
[Recall] [o.c.]	On-Center Spacing 16in

*Note: On-Center is used by the following functions:

Function	Calculates	
[qty@oc]**	Number of Vertical Members (studs, posts, poles , columns, or pilings) for a given length	
[R/Wall]	Calculates Rake Wall stud lengths	
[Jack] and [Ir/Jack]	Regular and Irregular Jack Rafter Lengths	

****Note:** When [Conv] [Prefs] setting "Advanced Function Mode" is set to ON (the default setting for BuildCalc version 2.1), the on-center spacing for the [qty@oc] function is entered using the [qty@oc] function.

[Pitch] Pitch Function

The pitch key can either:

- Calculate a pitch from any two of the following values stored: [Rise], [Run], [Diag]
- Store a pitch value for other calculations, entered in one of the following ways:
 - Unit-less quantity: interpreted as degrees
 - An entered quantity, followed by a [%] key press is interpreted as % Grade
 - A length (ex: inches, cm, etc.) is interpreted as Pitch, where
 Slope = Length / 12 inches.
- Recall a Pitch value for display

Examples:

1. Calculate Pitch from a g	iven [Rise] and [Run].

Input*	Display
clear temporary memory O	0
8 [Feet] [Rise]	Rise 8ft
6 [Feet] [Run]	Run 6ft
[Pitch]	Pitch 16in
[Pitch]	See results, below

Pitch		
Pitch - rise per 12i	n run	
	16in/12in	
Pitch - degrees	53.13°	
% Grade	133.3333%	
Slope	1.3333334	

2. Enter and Recall a Pitch.

Input*	Display
clear temporary memory O	0
8 [Inch] [Pitch]	Pitch 8in
••	0
[Pitch]	Pitch 8in

Note: Calculated pitch values, as in example 1, above, will be cleared from memory upon \bigcirc \bigcirc or [ClrAll]. Entered Pitch values, as in example 2, will be retained until a new value is entered. When a calculated pitch is cleared, the last entered pitch value is put into [Pitch].

[Polygn] Polygon Function

Given the following inputs:

- Diameter ([Circle]) or [Radius]
- Number of Sides

the Polygon function calculates or displays the following descriptive geometry for equilateral polygons:

- Full Corner Angle
- Bisected (Half) Corner Angle
- Length of a side
- Perimeter (sum of the sides)
- Area
- Radius (distance from the center to a corner)

Example:

Calculate the Area of a 6-sided Gazebo floor that is 12ft, corner to corner.

Input*	Display
clear temporary memory O	0
12 [Feet] [Circ]	Diameter 12ft
6 [Conv] [Polygn]	See below for results

Carrier ᅙ	1:06 PM	
	Polygon	
Full Angle	1	20.00°
Half Angle		60.00°
Side Length		6ft
Perimeter		36ft
Area	93.53	3074ft²
Radius		6ft
Sides		6
Store	Ø	Done

[Prefs] Preferences Storage Function

The comprehensive preference settings for BuildCalc.

Preference Settingss:

Setting	Description	
Reset	Resets BuildCalc's memory to the factory settings.	
Keyboard Clicks	Turns keyboard clicks on/off.	
Trig Keys	Switches between the display of the [Length] [Width] [Height] and the [SIN] [COS] [TAN] keys.	
Metric Linear Keys	Switches between the display of the [Yards] [Feet] [Inches] and the [m] [cm] [mm] keys.	
Advanced Function Mode	Switches between BuildCalc's advanced functionality and the level of functionality available prior to version 2.0.	
Fractional Resolution	Sets the resolution for fractional values. Default: ¹ / ₁₆ in	
Fractional Mode	Switches between displaying fractions to the nearest fraction (Standard) or displaying fractions always at the fractional resolution setting (Constant). Default: Standard	
Area Display Format	Determines the units in which area results are displayed. Default: Standard	
Volume Display Format	Determines the units in which volume results are displayed. Default: Standard	
Weight Display Format	Determines the units in which weight results are displayed. Default: Standard	
Pounds Per Ton	Determines how many pounds are assumed to be in an imperial ton. Defaults: 2,000 for North America 2,240 for everywhere else	

Setting	Description
Thousands Separator	Turns the thousands separator ON/OFF Default: OFF
Quantity Display	Determines the precision of quantity (dimensionless) numbers. Default: Auto precision
Meter Linear Display	Changes the number of decimal places meter values are displayed. Default: standard
Millimeter Length Display	Changes the number of decimal places millimeter values are displayed. Default: Auto precision
Decimal Degree Display	Changes the number of decimal places decimal degree values are displayed. Default: standard
Stairwell Headroom Height*	Used by the [Stair] function to calculate staircase opening size. Default: 6ft 8in . Note that this setting is not available when "Advanced Function Mode" is set to ON.
Calculate Rake Wall Studs	Used by the [R/Wall] key to determine which stud length is calculated first, the Shortest or the Longest . Which ever stud is calculated first will be exactly [o.c.] distance from the end of the wall. Default: Longest
Calculate Arched Wall	Used by the [Arc] function to determine if studs are positioned inside of the arch or outside of the arch. Default: Outside
Calculate Jack Rafters	Used by the [Jack] key to determine which rafter length is calculated first, the Shortest or the Longest . Which ever rafter is calculated first will be exactly [o.c.] distance from the end of the hip/valley rafter. Default: Longest
Space Minor Jack Rafters	Used to determine if Jack Rafters for Irregular Hip Roofs are positioned with the On-Center spacing maintained on both sides, or such that the Jack Rafters Mate at the Hip/Valley Rafter. Default: On-Center
Protractor Cheek Cut?	By default, Cheek Cut Angles are calculated for setting the bevel of a saw (circular or miter). Switch to on if, in "Results For:

Setting	Description
	Protractor" mode, you wish for the Cheek Cut Angles to be for a hand held protractor (on the edge of the board).

[qty@oc] Quantity spaced at On-Center distance Function

For estimating vertical members, such as framing, timbers, posts, poles, columns, pilings, etc.

- Calculates the quantity of vertical members along a length from:
 - User input
 - the value stored in the [Length] key
- Calculates the length that a given number of vertical members will span.

You can specify multiple on-center distances for calculation - which saves you from having to switch between all the different on-center values you use in your day-to-day calculations. See below for a complete example.

Example:

How many joists are required for a floor that spans 22' 8-3/4"?

Input	Display
clear temporary memory O	0
Enter a fence length 22 [Feet] 8 [Inch] 3 [/] 4	22ft 8- ³/₄in
[Conv] [qty@oc]	See results, below

-III Carrier 🗢 9:29 PM	Ē	
Qty @ On-Center		
Length 22ft 8- ³ / ₄	in	
On-Center Spacing / Quantity		
16in /	19	
24in /	13	
6ft /	5	
8ft /	4	
Missing the spacing you want? Press [Edit Sizes] and add a		
Edit Sizes Store	Done	

So if you were to space the joists at 16" centers, you would need 19. And for 24" centers, you would need 13. But what if you wanted to space these joists at 19- 1/2" centers? To add a new on-center spacing, try the following:

• Tap the [Edit Sizes] button to enter edit mode.

-III Carrier 🗢 9:32 PM	;
Qty @ On-Ce	nter
Length 22	2ft 8- ³/4in
On-Center Spacing /	Quantity
•	16in 🗮
•	24in [≡]
•	6ft
•	8ft
Missing the spacing you want? Press [Edit Sizes] and add a	
Cancel	+

• Tap the [+] button to add a new on-center spacing.

• Enter **19**[**Inches**]**1x**/**2**[**done**] for your new on-center spacing

• Bonus: Using the three little bars to the right of "19-1/2in", drag the "19-1/2in" cell up to between the "16in" and "24in" cells.

.III Ca	rrier 🔶	9:37 PM	
	Qty	@ On-Cen	ter
Or	-Center	Spacing / Q	uantity
•			16in [≡]
•		19	- ¹/₂in ≡
•			24in [≡]
•			6ft [≡]
•			8ft ≡
Mi Pre ne	ssing the ess [Edit w spacir	e spacing yo Sizes] and ng with the [ou want? add a +] button.
Can	cel		+

• Tap [Cancel] to finish

-메 Carrier	
Qty @ On-Center	
On-Center Spacing / Quan	tity
	19
19- ¹/₂in /	15
24in /	13
6ft /	5
8ft /	4
Missing the spacing you w Press [Edit Sizes] and add new spacing with the [+] b	vant? a utton.
Edit Sizes Store	Done

Now the results show that, for the 22' 8-3/4" span, you will need 15 joists if spaced at 19-1/2" centers.

Examples:

1. Calculate the Rake-Wall layout for a gable with a 8ft Run and a 8in/12in Pitch.

Input	Display
clear temporary memory O	0
8 [Inch] [Pitch]	Pitch 8in
14 [Feet] [Run]	Run 14ft
[Conv] [R/Wall]	see results, below

Rakewall Layout	
Rake Wall On-Center Spacing	
16in	
Rake Wall Stud 1 Length	
8ft 5- ⁵ / ₁₆ in	
Rake Wall Stud 2 Length	
7ft 6- 11/16in	
Rake Wall Stud 3 Length	
6ft 8in	
Rake Wall Stud 4 Length	
5ft 9- 5/16in	
Rake Wall Stud 5 Length	
4ft 10- 11/16in	
Rake Wall Stud 6 Length	
4ft	
Rake Wall Stud 7 Length	
3ft 1- ⁵ / ₁₆ in	
Rake Wall Stud 8 Length	
2ft 2- 11/16in	
Rake Wall Stud 9 Length	
1ft 4in	
Rake Wall Stud 10 Length	
5- ⁵ / ₁₆ in	
Rake Wall Base Length	
Oft	
Rake Wall Angle of Incline	
33.69°	

2. Calculate Rake-Wall layout from a given Run, Pitch and Base Wall.

Input	Display
clear temporary memory O	0
8 [Inch] [Pitch]	Pitch 8in
14 [Feet] [Run]	Run 14ft
2 [Feet] [Conv][R/Wall]	see results, below

Rakewall Layout	
Rake Wall On-Center Spacing	
16in	
Rake Wall Stud 1 Length	
10ft 5- ⁵ / ₁₆ in	
Rake Wall Stud 2 Length	
9ft 6- 11/16in	
Rake Wall Stud 3 Length	
8ft 8in	
Rake Wall Stud 4 Length	
7ft 9- 5/16in	
Rake Wall Stud 5 Length	
6ft 10- 11/16in	
Rake Wall Stud 6 Length	
6ft	
Rake Wall Stud 7 Length	
5ft 1- ⁵ / ₁₆ in	
Rake Wall Stud 8 Length	
4ft 2- 11/16In	
Rake Wall Stud 9 Length	
3ft 4in	
Rake Wall Stud 10 Length	
2TT 5- ³ / ₁₆ IN	
Rake Wall Base Length	
2tt	
Rake Wall Angle of Incline	
33.69	

Note: *The above calculations assume*:

- 16in On-Centers value stored at [o.c.]
 Largest to Smallest Rake Wall Display [Prefs] setting.

[Radius] Radius Function

Entry or retrieval of a radius value. To be either used by or a result of the following calculations:

Кеу	Description
[Circle]	Circle Geometry Function
[Arc]	Arc Geometry and Layout Function
[ColCon] (Column/one)	Column and Cone Geometry Function

Example:

1. Simple conversion between radius and diameter

Input	Display
clear temporary memory O	0
6 [Feet] [Conv] [Radius]	Radius 6ft
Θ	0
[Circle]	Diameter 12ft
Θ	0
[Conv] [Radius]	Radius 6ft

Examples:

1. Calculate Rise from a given [Pitch] and [Diag] (diagonal).

Input	Display
clear temporary memory	0
8 [Inch] [Pitch]	Pitch 8in
22 [Feet] [Diag]	Diag 22ft
[Rise]	Rise 12ft 2- ⁷ / ₁₆ in

2. Enter and Recall a Rise.

Input	Display
clear temporary memory O	0
12 [Feet] [Rise]	Rise 12ft
Θ	0
[Rise]	Rise 12ft

3. Calculated Segment Height (rise) from a diameter and arc angle

Input	Display
clear temporary memory O	0
2 [m] [Circle]	Diameter 2m
20.00° [Arc]	Arc 20.00°
[Rise]	Rise 0.015m

Note: Rise values will be cleared from memory upon $\bigcirc \bigcirc$ or [ClrAll].
[Roof] Roof Function

The Roof function calculates the following material information for a gable end roof:

- Roof Area
- Number of Shingle Squares
- Floor plan area

In addition, you can also have the Roof Function calculate quantities of custom size material - e.g. sheathing, underlayments and shingling. See the examples below to see how to do this.

To perform this calculation, the Roof Function uses the following stored values:

- Floor Plan Area, provided by either of the following:
 - o an Area
 - Floor Plan dimensions: [Length] and [Width]
- Pitch, provided by either of the following:
 - [Pitch]
 - Two of the following: [Rise], [Run], [Diag]

Examples

1. [Rise], [Run], [Length] and [Width] given. Let's calculate how much 4'x10' sheathing is needed for a roof that has an 11' rise, a 16' run on a house with a 32' width and a 42' length.

Input	Display
clear temporary memory O	0
11 [Feet] [Rise]	Rise 11ft
16 [Feet] [Run]	Run 16ft
32 [Feet] [Width]	Width 32ft

146 BuildCalc: Users Manual

42 [Feet] [Length]	Length 42ft
[Conv] [Roof]	See results, below

Roof		
Lanath		
Length	42ft	
Width	32ft	
Plan Area	1344ft ²	
Pitch	8- ¹/₄in/12in	
Roof Area	1630.985ft ²	
Squares	16.30985	
Material Size / Q	uantity	
10ft x 10ft /	16.30985	
Don't see the size you want? Press [Edit Sizes] and add a new size using the [+] button.		
Edit Sizes Store	Done	

BuildCalc tells us how many 10'x10' bundles of shingles our roof needs, but there doesn't appear to be any sheathing? No problem, just add it! Here's how:

• Tap the [Edit Sizes] button to activate the size editor.

Now, tap the [+] button to add a new size
 All Carrier 2 8:37 PM

	· ·			_
Roof				
16.30985				
Mater	ial Size	/ Quan	tity	
● 10ft x 10ft ■				
•				ଡ଼୲≡
Yard	Feet	Inches	\sim	
Conv	7	8	9	m
Store	4	5	6	x
Recall		2	3	cancel
M+	0		do	one

148 BuildCalc: Users Manual

• Tap in 4[Feet]x10[Feet][done] to enter your 4'x10' sheathing.

• Tap [Cancel] to finish.

Il Carrier ᅙ	8:43 PM	, in the second s	
Roof			
		32ft	
Plan Area			
	1	344ft ²	
Pitch			
	8- 1/4ii	n/12in	
Roof Area			
	1630.	985ft ²	
Squares	10.1		
	16.3	30985	
Material Siz	ze / Quantity		
10ft x 10ft /			
	16.3	30985	
4ft x 10ft /			
	40.7	77462	
Edit Sizes	Store 🥡	Done	

And now your results have been updated to include 4'x10' sheathing.

2: Enter a floor plan area and use the last entered [Pitch]. This example assumes 8" as the last entered pitch.

Input	Display
1300 [Feet] [Feet]	1300ft ²
[Conv] [Roof]	See results, below

Carrier 🤶	8:43 PM		
Roof			
		3211	
Plan Area	1	31/ft2	
Pitch		54411	
	8- 1/4i	n/12in	
Roof Area	1630.	985ft²	
Squares	16.3	30985	
Material Size / Quantity			
10ft x 10ft /	16.3	30985	
4ft x 10ft /	40.7	77462	
Edit Sizes	Store 🧃	Done	

Note that if a Material Size (for which you want to calculate an estimated usage) is missing, you can add it using the [Edit Sizes] button followed by the [+] button.

The Run key can either:

- Calculate a Run from any two of the following values stored:
 - [Pitch], [Rise], [Diag]
- Store a run value for other calculations
- Recall a run value for display
- Calculate the Chord Length (Run) for an Arc given the following:
 - Diameter ([Circle]) or [Radius]
 - [Arc] length or angle

Examples:

1. Calculate Run from a given [Pitch] and [Diag] (Diagonal).

Input	Display
clear temporary memory O	0
8 [Inch] [Pitch]	Pitch 8in
22 [Feet] [Diag]	Diag 22ft
[Run]	Run 18ft 3- ¹¹ / ₁₆ in

2. Enter and Recall a Run.

Input	Display
clear temporary memory O	0
12 [Feet] [Run]	Run 12ft
Θ	0
[Run]	Run 12ft

3. Calculated Chord Length (run) from a diameter and arc angle

Input	Display
clear temporary memory O	0
2 [m] [Circle]	Diameter 2m
20.00°[Arc]	Arc 20.00°
[Run]	Rise 0.347m

Note: Run values will be cleared from memory upon $\bigcirc \bigcirc$ or [ClrAll].

[SIN] SINE Function

- Calculate the sine for a given angle.
- The SINE of a triangle is the ratio of the rise to the diagonal.

Example:

1. Calculate Sine for 38°

Input	Display
clear temporary memory	0
38 [SIN]	0.615661

[Slope] Slope Function

The Slope key functions identical to the pitch key except that unit-less quantities entered will be interpreted as Slope (rise / run) instead on degrees. See the [Pitch] function for more information.

Example:

Enter a Slope.

Input	Display
clear temporary memory	0
7 [%] [Conv] [Slope]	% Grade 7
[Pitch]	Slope 7
[Pitch]	Pitch 0- ¹³ / ₁₆ in

[/] Solidus (Fractional Entry) Key

Switches from numerator to denominator entry.

Example:

Input	Display
clear temporary memory	0
7 [/] 16 [+]	0- ⁷ / ₁₆ in +
3 [/] 4	0- ⁷ / ₁₆ in + 0- ³ /₄in
[=]	1- ³ / ₁₆ in

[Stair] Stair Function

The stair function calculates stair layout and geometry based on the following input scenarios:

- 1. Stored [Rise] and [Run].
- 2. Stored [Rise] only.
- 3. Stored [Run] only.
- 4. Changes to Stairs function Input Parameters

See below for example calculations, notes and definitions.

As of version 2.0, BuildCalc's Advanced Stair Function is a bit different than the Stair function in earlier versions. The biggest change is that BuildCalc now gives you **more comprehensive** results via the new Advanced analysis type. This means you can provide more detailed specifications and BuildCalc returns results that require much less guess work. And these results are interactive. You can now make changes to inputs and the results are there without having to start your calculation from the beginning. Just tap on the parameter on the right of any cell in the "Input Parameters" section and then modify that parameter.

BuildCalc now has two Stair calculation modes:

- Simple: Calculate simple stair layout parameters, giving the same results as BuildCalc version 1.3.2. This mode is good for those familiar with laying out stairs using simple layout parameters.
- Advanced: Calculate advanced stair layout parameters, giving detailed results - including dimensioned drawings for the Stringer, the Stringer's installation and the finished staircase - less guess work. This mode is good for those who require a more exact layout as well as for those who are less familiar with stair layouts.

For more information on parameters:

- Tap the on-the-spot
 help (at the bottom left of each input parameter cell) for more information on input parameters.
- See the drawings and definitions, below.

1. Stored [Rise] and [Run].

Input*	Display
clear temporary memory	0
9 [Feet] 10 [Inch]	9ft 10in
[Rise]	Rise 9ft 10in
12 [Feet] [Run]	Run 12ft
[Stair]	See results, below

Stairs Funct	tion	
Analysis Type		Calculated Deputts
Simple	Advanced	Calculated Results
Simple	Advanced	
		Picore:
Input Parameters		16
Rise:		Riser Overage/Underage:
0	9ft 10in	Oin
Run:		UII
Ø	12ft	Calculated (Unit) Tread Width: /!\
Desired Riser Height:		9- %IN
Ø	7- 1/2in	Treads:
Desired Tread Width:		15
A	10in	Tread Overage/Underage:
Riser Limited?		0- ³/8in
A	OFF	Calculated Incline Angle:
Elush Landings?		37.46°
	ON	Minimum Finished Stairwell Opening:
		9ft 9- 7/ ₁₆ in
Headroom Height:	000	Stringer Length:
0	6ft 8in	15ft 1- 7/8in
Ceiling Thickness:		Stringer Throat:
0	10in	5- ³ /sin
Stringer Size:		Calculated Run:
0	2x12	12ft 0_ 3/ in
Fractional Resolution:		1211 0- 78111
0	1/16	
		Store Done

157

BuildCalc: Users Manual

But wait, where is the dimensioned drawings that BuildCalc promised? Well, the [Simple] Analysis Type emulates the [Stair] results found in BuildCalc prior to version 2.0. To get a more comprehensive stair layout - including dimensioned drawings - switch your Analysis Type to [Advanced].

Stairs Funct	ion
Analysis Type	
Simple	Advanced
Innut Parameters	
Rough Rise:	
0	9ft 10in
Run:	
0	12ft
Desired Riser Height:	
0	7- 1/2in
Desired Tread Width:	
0	10in
Riser Limited?	OFF
0	
Flush Landings?	ON
Headroom Height:	
0	6ft 8in
Ceiling Thickness:	
0	10in
Stringer Size:	
ð	2x12
Top finished floor thickness:	
0	0- ³/₄in
Bottom finished floor thic	kness:
0	1- ¹/₄in
Riser Thickness:	
0	0- ³/₄in
Tread Thickness:	
0	1- ¹/ ₈ in
Sub-Riser Thickness:	
0	0- ³/₄in
Sub-Tread Thickness:	
0	0- ³/₄in
Hangerboard Thickness:	0.31
U	0- ³/₄in 📗

Calculated Results	
Finished Floor to Floor Rise:	
9ft 9- 1	/₂in
Calculated (Unit) Riser Height:	
7- 3	/₃in
Risers:	
	16
Calculated (Unit) Tread Width: /!\	
9- 5	/₀in
Treads:	
	15
Calculated Incline Angle:	
37.4	42°
Minimum Finished Stairwell Openi	ng:
9ft 9- ⁵	/₃in
Stringer Length:	
15ft 0- ⁵/	16 in
Stringer Throat:	
5- 7/	16 in
Stringer Top to Top Floor Rough F	loor:
8- 1	/₂in
Layout	
Stringer Layout	>
Stringer Installation	>
Finished Layout	>
Store	Done
	Done

Now, to generate your dimensioned drawings, scroll to the bottom and tap on the "Finished Layout" cell.

Having trouble reading the drawing? Tap on the [email] button to send yourself. And, if you want, you can then also print it out.

Is the staircase layout what you want? Well, then [Done] and generate a Stringer layout by tapping on the "Stringer Layout" cell.

If the layout wasn't what you wanted, take a look at the input parameters. Don't understand a parameter? Tap on the 🕖 on-the-spot help for more

160 BuildCalc: Users Manual

information. Still don't see what you need? Then please email us at help@BuildCalc.com or call me at 859-227-1706.

2. Stored [Rise] only. Given a 9'10" rise, calculate a staircase layout - including the staircase run.

Input*	Display
clear temporary memory	0
9 [Feet] 10 [Inch]	Rise 9ft 10in
[Stair]	See results, below

Stairs Function	
Analysis Type	Calculated Results
	Calculated (Unit) Riser Height:
Simple Advance	^{ed} 7- ³ / ₈ in
	Risers:
Input Parameters	16
Rise:	Riser Overage/Underage:
0 9ft 10	Din Oin
Run:	Calculated (Unit) Tread Width:
0 12ft 6	6in 10in
Desired Riser Height:	Treads:
0 7- ¹ /	′₂in 15
Desired Tread Width:	Tread Overage/Underage:
0 10	Din Oin
Riser Limited?	
0	36.41°
Flush Landings?	Minimum Einisbed Stairwell Opening:
ON ON	
Headroom Height:	Stringer Length
6ft 8	Sin 45th C 3/ in
Ceiling Thickness	15π 6- %
	Stringer Throat:
	5- ⁵ / ₁₆ in
Stringer Size:	Calculated Run:
0 2x	12 12ft 6in
Fractional Resolution:	
0 1/	16 Store Done

3. Stored [Run] only. Given a 12 feet run, and 7- $\frac{1}{2}$ " desired riser height, what is the staircase run you can fit into this space?

Input*	Display
clear temporary memory	0
12 [Feet] [Run]	Run 12ft
[Stair]	See results, below

Stairs Function	
Analysis Type	
Simple Adva	anced
	Calculated Results
	Calculated (Unit) Riser Height:
Input Parameters	7- 1/2in
Rise:	Risers:
Ø 9ft 4-	- ¹ / ₂ in 15
Run:	Riser Overage/Underage:
0	12ft Oin
Desired Riser Height:	Calculated (Unit) Tread Width:
0 7-	- ¹ / ₂ in 10- ⁵ / ₁₆ in
Desired Tread Width:	Treads:
0	10in 14
Biser Limited 2	Tread Overage/Underage:
A A	OFF 0- 3/8in
	Calculated Incline Angle:
Flush Landings?	36.03°
	Minimum Finished Stairwell Opening:
Headroom Height:	10ft 3- ³ / ₄ in
0 6f	ft 8in Stringer Length:
Ceiling Thickness:	14ft 10- 1/2in
0	10in Stringer Throat:
Stringer Size:	5- ³ / ₁₆ in
	2x12 Calculated Run:
Fractional Resolution:	12ft 0- ³ / ₈ in
	1/16
	Store Done

*Note: Depending on context, the presence of "/!\" means either:

- The Actual Tread Width is less than the Desired Tread Width.
- The Actual Riser Height is greater than the Desired Riser Height.

Definitions:

- **Rise:** The vertical distance, floor to floor.
- **Run:** The horizontal distance from the first riser to the last (the distance the stair case will occupy).
- Stringer (a.k.a: carriages, stair horses or stair jacks): The diagonal members that support a staircase.
- Angle of Incline: Angle based on the rise (Actual Riser Height) and run (Actual Tread Width) of each stair. Note: This is not the same as the pitch of a stair case (staircase Rise / staircase Run).
- **Stairwell Opening:** The size of the hole in the floor above necessary to assure sufficient Staircase Headroom. Most codes have a minimum staircase headroom of 6' 8".
- **Riser**: The vertical face of a step.
- **Desired Riser Height:** The desired vertical rise for each step.
- Actual Riser Height: The calculated vertical riser for each step.
- **Riser Overage / Underage:** The results of step size calculations are in fractional increments (for ease of layout) Because of this, the sum of all the Actual Riser Heights may be a little over or a little under the Rise.
- Tread: The horizontal face of a step.
- **Desired Tread Width:** The distance of each tread measured from the face of one riser to the face of the next riser.
- Actual Tread Width: The calculated horizontal distance for each tread (measured from riser face to riser face).
- **Tread Overage / Underage:** The results of step size calculations are in fractional increments (for ease of layout) Because of this, the sum of all the Actual Tread Widths may be a little over or a little under the Run.

[TAN] TANGENT Function

- Calculate the tangent for a given angle.
- The tangent of a triangle is the ratio of the rise to the run.

Example:

1. Calculate tangent for 38 $^{\circ}$

Input*	Display
clear temporary memory O	0
38 [TAN]	0.781286

164 BuildCalc: Users Manual

[tons] Tons* Function

- Set the units for a quantity to tons.
- Convert a weight to tons.
- Convert a volume to tons (using the density stored in <a>[wt/vol])

NOTE: Switch between long tons (2240lbs) and short tons (2000lbs) using the "Pounds per Ton" setting, found in [Conv] [Prefs].

Examples:

1. Set the units for a quantity to tons.

Input	Display
clear temporary memory O O	0
3 [Conv] [tons]	3Т

2. Convert a weight to tons.

Input	Display
clear temporary memory	0
12 [Conv] [m tons]	12MT
[Conv] [tons]	13.22774T

3. Convert a volume to tons (using the density stored in [wt/vol])

Input*	Display
clear temporary memory	0
11 [Yard] [Yard] [Yard]	11yd ³
[Conv] [tons]	16.5T

*Note:

- 1. Assumes 1.5 tons per cubic yard is stored in [wt/vol].
- 2. Assumes short tons. Go to [Conv] [Prefs] to switch between short (2,000 lbs) and long (2240 lbs) tons.

[Width] Width Function

- Store and Recall a width for use by the [Roof], [Width], [Height], [Msnry], and [DryWal] functions
- 2. Calculate Area, Square-up and Perimeter

Examples:

1. Store and Recall a width.

Input	Display
clear temporary memory	0
[Recall] [Width]	0
10 [Feet] [Width]	Width 10ft
Θ	0
[Width]	Width 10ft

2. Calculate Area, Square-up and Perimeter.

Input	Display
clear temporary memory	0
22 [Feet] [Length]	Length 22ft
18 [Feet] 8 [Inch] [Width]	Width 18ft 8in
[Width]	See results, below

Width	
(here)	
Area	410.6667ft ²
Square-up (Diagonal)	
	28ft 10- 1/4in
Perimeter	
	81ft 4in
Length	
	22ft
Width	
	18ft 8in
Store	Done

[wt/vol] Density Function

- 1. Enter a density (weight per unit volume) value to be used in other functions*.
- 2. Recall the stored density value.

Example:

1. Enter a new weight to volume conversion constant of 1600 kg / m^3 and then display it.

Input	Display
clear temporary memory O 1600	1600
[Store] [wt/vol]	1600T/yd ³
[wt/vol]	1600lb/yd ³
[wt/vol]	1600lb/ft ³
[wt/vol]	1600MT/m ³
[wt/vol]	1600kg/m ³
۲	0
[Recall] [wt/vol]	1.348444T/yd ³
[wt/vol]	2696.888lb/yd ³
[wt/vol]	99.88474lb/ft ³

[wt/vol]	1.6MT/m ³
[wt/vol]	1600kg/m ³

*Density is used in the following functions:

Function	Description
[Yard]	Conversion between a weight and cubic yards.
[Feet]	Conversion between a weight and cubic feet.
[Inch]	Conversion between a weight and cubic inches.
[m]	Conversion between a weight and cubic meters.
[cm]	Conversion between a weight and cubic centimeters.
[mm]	Conversion between a weight and cubic mm.
[Bd Ft]	Conversion between a weight and board feet.
[lbs]	Conversion between a volume and pounds.
[Tons]	Conversion between a volume and tons.
[kg]	Conversion between a volume and kilograms.
[m tons]	Conversion between a volume and metric tons.

170 BuildCalc: Users Manual

[Yard] Yard Entry and Conversion

- 1. Set the units for a quantity to yards
- 2. Convert a length, area or volume to yards
- 3. Convert a weight to cubic yards

Examples:

1. Set the units for a quantity to yards.

Input	Display
clear temporary memory	0
9 [Yard]	9yd
[Yard]	9yd²
[Yard]	9yd³

2. Converts a length, area or volume to yards.

Input	Display
clear temporary memory	0
9 [m]	9m
[Yard]	9.84252yd

3. Converts a weight to cubic yards (using the density stored in [wt/vol]).

Input	Display
clear temporary memory	0
11 [Conv] [tons]	11T
[Yard]	9.7.333333yd ³

*Note: Assumes 1.5 tons per cubic yard is stored in [wt/vol].